-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathclassifier.py
148 lines (112 loc) · 4.6 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Anna Jancso, January 2018
import configparser as cp
import shutil
import os
import tensorflow as tf
from feature_extractor import FeatureExtractor
import pandas as pd
class Classifier:
"""Feed-forward neural network classifier."""
def __init__(self, config_path='configs.ini'):
"""Get a config parser and read config file.
config_path (str): path to INI file containing configurations for NN
"""
self.config_path = config_path
self.config = cp.ConfigParser(interpolation=cp.ExtendedInterpolation())
self.config.read(config_path)
self.classifier = None
tf.logging.set_verbosity(tf.logging.INFO)
# [feature1, feature2, ..., featureN, label]
self.column_names = self.get_column_names()
def get_column_names(self):
"""Get column names."""
columns = FeatureExtractor(self.config_path).column_names + ['label']
return columns
def load_data(self):
"""Load the training data."""
train_path = self.config['paths']['training_data']
train = pd.read_csv(train_path, names=self.column_names, header=0)
train_x, train_y = train, train.pop('label')
return train_x, train_y
def train_input_fn(self, features, labels):
"""Input function for training."""
n_epochs = int(self.config['parameters']['n_epochs'])
batch_size = int(self.config['parameters']['batch_size'])
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
dataset = dataset.shuffle(10000).repeat(count=n_epochs)
dataset = dataset.batch(batch_size)
return dataset
def create_model(self):
"""Create a new model."""
model_path = self.config['paths']['model']
# if a model already exists, remove it first
if os.path.isdir(model_path):
shutil.rmtree(model_path)
self.build_model()
def restore_model(self):
"""Restore a trained model."""
self.build_model()
def build_model(self):
"""Build or restore neural network model."""
model_path = self.config['paths']['model']
n_hidden_layers = int(self.config['parameters']['n_hidden_layers'])
n_hidden_neurons = int(self.config['parameters']['n_hidden_neurons'])
n_output_neurons = len(self.config['classes'])
checkpoint_config = tf.estimator.RunConfig(
save_checkpoints_secs=2*60,
keep_checkpoint_max=10,
)
feature_columns = [
tf.feature_column.numeric_column(name)
for name in self.column_names[:-1]]
self.classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=([n_hidden_neurons])*n_hidden_layers,
n_classes=n_output_neurons,
model_dir=model_path,
config=checkpoint_config)
def train_model(self):
"""Train the model."""
train_x, train_y = self.load_data()
self.classifier.train(
input_fn=lambda: self.train_input_fn(train_x, train_y),
steps=None)
def predict_from_ngram(self, ngram):
"""Predict class from a ngram.
args:
ngram (str): n-gram
"""
feat_extr = FeatureExtractor(self.config_path)
feat_val_list = [val for val in feat_extr.iter_feature_values(ngram)]
return self.predict_from_feat_val_list(feat_val_list)
def predict_from_feat_val_list(self, feat_val_list):
"""Predict class from a list of feature values.
args:
feat_val_list (list): list of feature values
"""
features = {}
for i, f in enumerate(feat_val_list):
name = self.column_names[i]
features[name] = [f]
predictions = self.classifier.predict(
input_fn=lambda: self.eval_input_fn(features))
for pred_dict in predictions:
class_id = pred_dict['class_ids'][0]
probability = pred_dict['probabilities'][class_id]
print(class_id, probability)
def eval_input_fn(self, features):
"""An input function for evaluation or prediction.
args:
features (dict): {feature-name: [value1, value2, ...],...}
"""
dataset = tf.data.Dataset.from_tensor_slices(features)
dataset = dataset.batch(128)
return dataset
def main():
classifier = Classifier('CRAFT.ini')
classifier.create_model()
classifier.train_model()
if __name__ == '__main__':
main()