This repository was archived by the owner on Nov 27, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 63
/
Copy pathpostpro.py
1844 lines (1672 loc) · 78.1 KB
/
postpro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# --- For cmd.py
import os
import pandas as pd
import numpy as np
import re
import pyFAST.input_output as weio
from pyFAST.common import PYFASTException as WELIBException
# --- fast libraries
from pyFAST.input_output.fast_input_file import FASTInputFile
from pyFAST.input_output.fast_output_file import FASTOutputFile
from pyFAST.input_output.fast_input_deck import FASTInputDeck
import pyFAST.fastfarm.fastfarm as fastfarm
# --------------------------------------------------------------------------------}
# --- Tools for IO
# --------------------------------------------------------------------------------{
def getEDClass(class_or_filename):
"""
Return ElastoDyn instance of FileCl
INPUT: either
- an instance of FileCl, as returned by reading the file, ED = weio.read(ED_filename)
- a filepath to a ElastoDyn input file
- a filepath to a main OpenFAST input file
"""
if hasattr(class_or_filename,'startswith'): # if string
ED = FASTInputFile(class_or_filename)
if 'EDFile' in ED.keys(): # User provided a .fst file...
parentDir=os.path.dirname(class_or_filename)
EDfilename = os.path.join(parentDir, ED['EDFile'].replace('"',''))
ED = FASTInputFile(EDfilename)
else:
ED = class_or_filename
return ED
def ED_BldStations(ED):
""" Returns ElastoDyn Blade Station positions, useful to know where the outputs are.
INPUTS:
- ED: either:
- a filename of a ElastoDyn input file
- an instance of FileCl, as returned by reading the file, ED = weio.read(ED_filename)
OUTUPTS:
- bld_fract: fraction of the blade length were stations are defined
- r_nodes: spanwise position from the rotor apex of the Blade stations
"""
ED = getEDClass(ED)
nBldNodes = ED['BldNodes']
bld_fract = np.arange(1./nBldNodes/2., 1, 1./nBldNodes)
r_nodes = bld_fract*(ED['TipRad']-ED['HubRad']) + ED['HubRad']
return bld_fract, r_nodes
def ED_TwrStations(ED, addBase=True):
""" Returns ElastoDyn Tower Station positions, useful to know where the outputs are.
INPUTS:
- ED: either:
- a filename of a ElastoDyn input file
- an instance of FileCl, as returned by reading the file, ED = weio.read(ED_filename)
OUTPUTS:
- r_fract: fraction of the towet length were stations are defined
- h_nodes: height from the *ground* of the stations (not from the Tower base)
"""
ED = getEDClass(ED)
nTwrNodes = ED['TwrNodes']
twr_fract = np.arange(1./nTwrNodes/2., 1, 1./nTwrNodes)
h_nodes = twr_fract*(ED['TowerHt']-ED['TowerBsHt'])
if addBase:
h_nodes += ED['TowerBsHt']
return twr_fract, h_nodes
def ED_BldGag(ED):
""" Returns the radial position of ElastoDyn blade gages
INPUTS:
- ED: either:
- a filename of a ElastoDyn input file
- an instance of FileCl, as returned by reading the file, ED = weio.read(ED_filename)
OUTPUTS:
- r_gag: The radial positions of the gages, given from the rotor apex
"""
ED = getEDClass(ED)
_,r_nodes= ED_BldStations(ED)
# if ED.hasNodal:
# return r_nodes, None
nOuts = ED['NBlGages']
if nOuts<=0:
return np.array([]), np.array([])
if type(ED['BldGagNd']) is list:
Inodes = np.asarray(ED['BldGagNd'])
else:
Inodes = np.array([ED['BldGagNd']])
r_gag = r_nodes[ Inodes[:nOuts] -1]
return r_gag, Inodes
def ED_TwrGag(ED, addBase=True):
""" Returns the heights of ElastoDyn blade gages
INPUTS:
- ED: either:
- a filename of a ElastoDyn input file
- an instance of FileCl, as returned by reading the file, ED = weio.read(ED_filename)
- addBase: if True, TowerBsHt is added to h_gag
OUTPUTS:
- h_gag: The heights of the gages, given from the ground height (tower base + TowerBsHt)
"""
ED = getEDClass(ED)
_,h_nodes= ED_TwrStations(ED, addBase=addBase)
nOuts = ED['NTwGages']
if nOuts<=0:
return np.array([]), None
if type(ED['TwrGagNd']) is list:
Inodes = np.asarray(ED['TwrGagNd'])
else:
Inodes = np.array([ED['TwrGagNd']])
h_gag = h_nodes[ Inodes[:nOuts] -1]
return h_gag, Inodes
def AD14_BldGag(AD):
""" Returns the radial position of AeroDyn 14 blade gages (based on "print" in column 6)
INPUTS:
- AD: either:
- a filename of a AeroDyn input file
- an instance of FileCl, as returned by reading the file, AD = weio.read(AD_filename)
OUTPUTS:
- r_gag: The radial positions of the gages, given from the blade root
"""
if hasattr(AD,'startswith'): # if string
AD = FASTInputFile(AD)
Nodes=AD['BldAeroNodes']
if Nodes.shape[1]==6:
doPrint= np.array([ n.lower().find('p')==0 for n in Nodes[:,5]])
else:
doPrint=np.array([ True for n in Nodes[:,0]])
r_gag = Nodes[doPrint,0].astype(float)
IR = np.arange(1,len(Nodes)+1)[doPrint]
return r_gag, IR
def AD_BldGag(AD,AD_bld,chordOut=False):
""" Returns the radial position of AeroDyn blade gages
INPUTS:
- AD: either:
- a filename of a AeroDyn input file
- an instance of FileCl, as returned by reading the file, AD = weio.read(AD_filename)
- AD_bld: either:
- a filename of a AeroDyn Blade input file
- an instance of FileCl, as returned by reading the file, AD_bld = weio.read(AD_bld_filename)
OUTPUTS:
- r_gag: The radial positions of the gages, given from the blade root
"""
if hasattr(AD,'startswith'): # if string
AD = FASTInputFile(AD)
if hasattr(AD_bld,'startswith'): # if string
AD_bld = FASTInputFile(AD_bld)
#print(AD_bld.keys())
nOuts=AD['NBlOuts']
if nOuts<=0:
if chordOut:
return np.array([]), np.array([])
else:
return np.array([])
INodes = np.array(AD['BlOutNd'][:nOuts])
r_gag = AD_bld['BldAeroNodes'][INodes-1,0]
if chordOut:
chord_gag = AD_bld['BldAeroNodes'][INodes-1,5]
return r_gag,chord_gag
else:
return r_gag
def BD_BldStations(BD, BDBld):
""" Returns BeamDyn Blade Quadrature Points positions:
- Defines where BeamDyn outputs are provided.
- Used by BeamDyn for the Input Mesh u%DistrLoad
and the Output Mesh y%BldMotion
NOTE: This should match the quadrature points in the summary file of BeamDyn for a straight beam
This will NOT match the "Initial Nodes" reported in the summary file.
INPUTS:
- BD: either:
- a filename of a BeamDyn input file
- an instance of FileCl, as returned by reading the file, BD = weio.read(BD_filename)
- BDBld: same as BD but for the BeamDyn blade file
OUTPUTS:
- r_nodes: spanwise position from the balde root of the Blade stations
"""
GAUSS_QUADRATURE = 1
TRAP_QUADRATURE = 2
if hasattr(BD,'startswith'): # if string
BD = FASTInputFile(BD)
if hasattr(BDBld,'startswith'): # if string
BDBld = FASTInputFile(BDBld)
# BD['BldFile'].replace('"',''))
# --- Extract relevant info from BD files
z_kp = BD['MemberGeom'][:,2]
R = z_kp[-1]-z_kp[0]
nStations = BDBld['station_total']
rStations = BDBld['BeamProperties']['span']*R
quad = BD['quadrature']
refine = BD['refine']
nodes_per_elem = BD['order_elem'] + 1
if 'default' in str(refine).lower():
refine = 1
# --- Distribution of points
if quad==GAUSS_QUADRATURE:
# See BD_GaussPointWeight
# Number of Gauss points
nqp = nodes_per_elem #- 1
# qp_indx_offset = 1 ! we skip the first node on the input mesh (AD needs values at the end points, but BD doesn't use them)
x, _ = np.polynomial.legendre.leggauss(nqp)
r= R*(1+x)/2
elif quad==TRAP_QUADRATURE:
# See BD_TrapezoidalPointWeight
nqp = (nStations - 1)*refine + 1
# qp_indx_offset = 0
# BldMotionNodeLoc = BD_MESH_QP ! we want to output y%BldMotion at the blade input property stations, and this will be a short-cut
dr = np.diff(rStations)/refine
rmid = np.concatenate( [rStations[:-1]+dr*(iref+1) for iref in np.arange(refine-1) ])
r = np.concatenate( (rStations, rmid))
r = np.unique(np.sort(r))
else:
raise NotImplementedError('Only Gauss and Trap quadrature implemented')
return r
def BD_BldGag(BD):
""" Returns the radial position of BeamDyn blade gages
INPUTS:
- BD: either:
- a filename of a BeamDyn input file
- an instance of FileCl, as returned by reading the file, BD = weio.read(BD_filename)
OUTPUTS:
- r_gag: The radial positions of the gages, given from the rotor apex
"""
if hasattr(BD,'startswith'): # if string
BD = FASTInputFile(BD)
M = BD['MemberGeom']
r_nodes = M[:,2] # NOTE: we select the z axis here, and we don't take curvilenear coord
nOuts = BD['NNodeOuts']
if nOuts<=0:
nOuts=0
if type(BD['OutNd']) is list:
Inodes = np.asarray(BD['OutNd'])
else:
Inodes = np.array([BD['OutNd']])
r_gag = r_nodes[ Inodes[:nOuts] -1]
return r_gag, Inodes, r_nodes
#
def SD_MembersNodes(SD):
sd = SubDyn(SD)
return sd.pointsMN
def SD_MembersJoints(SD):
sd = SubDyn(SD)
return sd.pointsMJ
def SD_MembersGages(SD):
sd = SubDyn(SD)
return sd.pointsMNout
#
# 1, 7, 14, 21, 30, 36, 43, 52, 58 BldGagNd List of blade nodes that have strain gages [1 to BldNodes] (-) [unused if NBlGages=0]
# --------------------------------------------------------------------------------}
# --- Helper functions for radial data
# --------------------------------------------------------------------------------{
def _HarmonizeSpanwiseData(Name, Columns, vr, R, IR=None) :
""" helper function to use with spanwiseAD and spanwiseED """
# --- Data present
data = [c for _,c in Columns if c is not None]
ColNames = [n for n,_ in Columns if n is not None]
Lengths = [len(d) for d in data]
if len(data)<=0:
print('[WARN] No spanwise data for '+Name)
return None, None, None
# --- Harmonize data so that they all have the same length
nrMax = np.max(Lengths)
ids=np.arange(nrMax)
if vr is None:
bFakeVr=True
vr_bar = ids/(nrMax-1)
else:
vr_bar=vr/R
bFakeVr=False
if (nrMax)<len(vr_bar):
vr_bar=vr_bar[1:nrMax]
elif (nrMax)>len(vr_bar):
raise Exception('Inconsitent length between radial stations and max index present in output chanels')
for i in np.arange(len(data)):
d=data[i]
if len(d)<nrMax:
Values = np.zeros((nrMax,1))
Values[:] = np.nan
Values[1:len(d)] = d
data[i] = Values
# --- Combine data and remove
dataStack = np.column_stack([d for d in data])
ValidRow = np.logical_not([np.isnan(dataStack).all(axis=1)])
dataStack = dataStack[ValidRow[0],:]
ids = ids [ValidRow[0]]
vr_bar = vr_bar [ValidRow[0]]
# --- Create a dataframe
dfRad = pd.DataFrame(data= dataStack, columns = ColNames)
if bFakeVr:
dfRad.insert(0, 'i/n_[-]', vr_bar)
else:
dfRad.insert(0, 'r/R_[-]', vr_bar)
if R is not None:
r = vr_bar*R
if IR is not None:
dfRad['Node_[#]']=IR[:nrMax]
dfRad['i_[#]']=ids+1
if not bFakeVr:
dfRad['r_[m]'] = r
return dfRad, nrMax, ValidRow
def insert_spanwise_columns(df, vr=None, R=None, IR=None, sspan='r', sspan_bar='r/R'):
"""
Add some columns to the radial data
df: dataframe
"""
if df is None:
return df
if df.shape[1]==0:
return None
nrMax=len(df)
ids=np.arange(nrMax)
if vr is None or R is None:
# Radial position unknown
vr_bar = ids/(nrMax-1)
df.insert(0, 'i/n_[-]', vr_bar)
else:
vr_bar=vr/R
if (nrMax)<=len(vr_bar):
vr_bar=vr_bar[:nrMax]
elif (nrMax)>len(vr_bar):
raise Exception('Inconsistent length between radial stations ({:d}) and max index present in output chanels ({:d})'.format(len(vr_bar),nrMax))
df.insert(0, sspan_bar+'_[-]', vr_bar)
if IR is not None:
df['Node_[#]']=IR[:nrMax]
df['i_[#]']=ids+1
if vr is not None:
df[sspan+'_[m]'] = vr[:nrMax]
return df
def find_matching_columns(Cols, PatternMap):
ColsInfo=[]
nrMax=0
for colpattern,colmap in PatternMap.items():
# Extracting columns matching pattern
cols, sIdx = find_matching_pattern(Cols, colpattern)
if len(cols)>0:
# Sorting by ID
cols = np.asarray(cols)
Idx = np.array([int(s) for s in sIdx])
Isort = np.argsort(Idx)
Idx = Idx[Isort]
cols = cols[Isort]
col={'name':colmap,'Idx':Idx,'cols':cols}
nrMax=max(nrMax,np.max(Idx))
ColsInfo.append(col)
return ColsInfo,nrMax
def extract_spanwise_data(ColsInfo, nrMax, df=None,ts=None):
"""
Extract spanwise data based on some column info
ColsInfo: see find_matching_columns
"""
nCols = len(ColsInfo)
if nCols==0:
return None
if ts is not None:
Values = np.zeros((nrMax,nCols))
Values[:] = np.nan
elif df is not None:
raise NotImplementedError()
ColNames =[c['name'] for c in ColsInfo]
for ic,c in enumerate(ColsInfo):
Idx, cols, colname = c['Idx'], c['cols'], c['name']
for idx,col in zip(Idx,cols):
Values[idx-1,ic]=ts[col]
nMissing = np.sum(np.isnan(Values[:,ic]))
if len(cols)<nrMax:
#print(Values)
print('[WARN] Not all values found for {}, missing {}/{}'.format(colname,nMissing,nrMax))
if len(cols)>nrMax:
print('[WARN] More values found for {}, found {}/{}'.format(colname,len(cols),nrMax))
df = pd.DataFrame(data=Values, columns=ColNames)
df = df.reindex(sorted(df.columns), axis=1)
return df
def _BDSpanMap():
BDSpanMap=dict()
for sB in ['B1','B2','B3']:
# Old nodal outputs
BDSpanMap['^'+sB+r'N(\d)TDxr_\[m\]'] = sB+'TDxr_[m]'
BDSpanMap['^'+sB+r'N(\d)TDyr_\[m\]'] = sB+'TDyr_[m]'
BDSpanMap['^'+sB+r'N(\d)TDzr_\[m\]'] = sB+'TDzr_[m]'
# New nodal outputs
BDSpanMap['^'+sB+r'N(\d*)_FxL_\[N\]'] = sB+'FxL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FxL_\[N\]'] = sB+'FxL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FxL_\[N\]'] = sB+'FxL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MxL_\[N-m\]'] = sB+'MxL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MxL_\[N-m\]'] = sB+'MxL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MxL_\[N-m\]'] = sB+'MxL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_Fxr_\[N\]'] = sB+'Fxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_Fxr_\[N\]'] = sB+'Fxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_Fxr_\[N\]'] = sB+'Fxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_Mxr_\[N-m\]'] = sB+'Mxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_Mxr_\[N-m\]'] = sB+'Mxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_Mxr_\[N-m\]'] = sB+'Mxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_TDxr_\[m\]'] = sB+'TDxr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_TDyr_\[m\]'] = sB+'TDyr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_TDzr_\[m\]'] = sB+'TDzr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_RDxr_\[-\]'] = sB+'RDxr_[-]'
BDSpanMap['^'+sB+r'N(\d*)_RDyr_\[-\]'] = sB+'RDyr_[-]'
BDSpanMap['^'+sB+r'N(\d*)_RDzr_\[-\]'] = sB+'RDzr_[-]'
BDSpanMap['^'+sB+r'N(\d*)_AbsXg_\[m\]'] = sB+'AbsXg_[m]'
BDSpanMap['^'+sB+r'N(\d*)_AbsYg_\[m\]'] = sB+'AbsYg_[m]'
BDSpanMap['^'+sB+r'N(\d*)_AbsZg_\[m\]'] = sB+'AbsZg_[m]'
BDSpanMap['^'+sB+r'N(\d*)_AbsXr_\[m\]'] = sB+'AbsXr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_AbsYr_\[m\]'] = sB+'AbsYr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_AbsZr_\[m\]'] = sB+'AbsZr_[m]'
BDSpanMap['^'+sB+r'N(\d*)_TVxg_\[m/s\]'] = sB+'TVxg_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVyg_\[m/s\]'] = sB+'TVyg_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVzg_\[m/s\]'] = sB+'TVzg_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVxl_\[m/s\]'] = sB+'TVxl_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVyl_\[m/s\]'] = sB+'TVyl_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVzl_\[m/s\]'] = sB+'TVzl_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVxr_\[m/s\]'] = sB+'TVxr_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVyr_\[m/s\]'] = sB+'TVyr_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_TVzr_\[m/s\]'] = sB+'TVzr_[m/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVxg_\[deg/s\]'] = sB+'RVxg_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVyg_\[deg/s\]'] = sB+'RVyg_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVzg_\[deg/s\]'] = sB+'RVzg_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVxl_\[deg/s\]'] = sB+'RVxl_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVyl_\[deg/s\]'] = sB+'RVyl_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVzl_\[deg/s\]'] = sB+'RVzl_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVxr_\[deg/s\]'] = sB+'RVxr_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVyr_\[deg/s\]'] = sB+'RVyr_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_RVzr_\[deg/s\]'] = sB+'RVzr_[deg/s]'
BDSpanMap['^'+sB+r'N(\d*)_TAxl_\[m/s^2\]'] = sB+'TAxl_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_TAyl_\[m/s^2\]'] = sB+'TAyl_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_TAzl_\[m/s^2\]'] = sB+'TAzl_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_TAxr_\[m/s^2\]'] = sB+'TAxr_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_TAyr_\[m/s^2\]'] = sB+'TAyr_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_TAzr_\[m/s^2\]'] = sB+'TAzr_[m/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAxl_\[deg/s^2\]'] = sB+'RAxl_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAyl_\[deg/s^2\]'] = sB+'RAyl_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAzl_\[deg/s^2\]'] = sB+'RAzl_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAxr_\[deg/s^2\]'] = sB+'RAxr_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAyr_\[deg/s^2\]'] = sB+'RAyr_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_RAzr_\[deg/s^2\]'] = sB+'RAzr_[deg/s^2]'
BDSpanMap['^'+sB+r'N(\d*)_PFxL_\[N\]'] = sB+'PFxL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_PFyL_\[N\]'] = sB+'PFyL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_PFzL_\[N\]'] = sB+'PFzL_[N]'
BDSpanMap['^'+sB+r'N(\d*)_PMxL_\[N-m\]'] = sB+'PMxL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_PMyL_\[N-m\]'] = sB+'PMyL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_PMzL_\[N-m\]'] = sB+'PMzL_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_DFxL_\[N/m\]'] = sB+'DFxL_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DFyL_\[N/m\]'] = sB+'DFyL_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DFzL_\[N/m\]'] = sB+'DFzL_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMxL_\[N-m/m\]'] = sB+'DMxL_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMyL_\[N-m/m\]'] = sB+'DMyL_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMzL_\[N-m/m\]'] = sB+'DMzL_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_DFxR_\[N/m\]'] = sB+'DFxR_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DFyR_\[N/m\]'] = sB+'DFyR_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DFzR_\[N/m\]'] = sB+'DFzR_[N/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMxR_\[N-m/m\]'] = sB+'DMxR_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMyR_\[N-m/m\]'] = sB+'DMyR_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_DMzR_\[N-m/m\]'] = sB+'DMzR_[N-m/m]'
BDSpanMap['^'+sB+r'N(\d*)_FFbxl_\[N\]'] = sB+'FFbxl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFbyl_\[N\]'] = sB+'FFbyl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFbzl_\[N\]'] = sB+'FFbzl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFbxr_\[N\]'] = sB+'FFbxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFbyr_\[N\]'] = sB+'FFbyr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFbzr_\[N\]'] = sB+'FFbzr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MFbxl_\[N-m\]'] = sB+'MFbxl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFbyl_\[N-m\]'] = sB+'MFbyl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFbzl_\[N-m\]'] = sB+'MFbzl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFbxr_\[N-m\]'] = sB+'MFbxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFbyr_\[N-m\]'] = sB+'MFbyr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFbzr_\[N-m\]'] = sB+'MFbzr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_FFcxl_\[N\]'] = sB+'FFcxl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFcyl_\[N\]'] = sB+'FFcyl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFczl_\[N\]'] = sB+'FFczl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFcxr_\[N\]'] = sB+'FFcxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFcyr_\[N\]'] = sB+'FFcyr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFczr_\[N\]'] = sB+'FFczr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MFcxl_\[N-m\]'] = sB+'MFcxl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFcyl_\[N-m\]'] = sB+'MFcyl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFczl_\[N-m\]'] = sB+'MFczl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFcxr_\[N-m\]'] = sB+'MFcxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFcyr_\[N-m\]'] = sB+'MFcyr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFczr_\[N-m\]'] = sB+'MFczr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_FFdxl_\[N\]'] = sB+'FFdxl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFdyl_\[N\]'] = sB+'FFdyl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFdzl_\[N\]'] = sB+'FFdzl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFdxr_\[N\]'] = sB+'FFdxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFdyr_\[N\]'] = sB+'FFdyr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFdzr_\[N\]'] = sB+'FFdzr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MFdxl_\[N-m\]'] = sB+'MFdxl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFdyl_\[N-m\]'] = sB+'MFdyl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFdzl_\[N-m\]'] = sB+'MFdzl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFdxr_\[N-m\]'] = sB+'MFdxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFdyr_\[N-m\]'] = sB+'MFdyr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFdzr_\[N-m\]'] = sB+'MFdzr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_FFgxl_\[N\]'] = sB+'FFgxl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFgyl_\[N\]'] = sB+'FFgyl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFgzl_\[N\]'] = sB+'FFgzl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFgxr_\[N\]'] = sB+'FFgxr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFgyr_\[N\]'] = sB+'FFgyr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFgzr_\[N\]'] = sB+'FFgzr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MFgxl_\[N-m\]'] = sB+'MFgxl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFgyl_\[N-m\]'] = sB+'MFgyl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFgzl_\[N-m\]'] = sB+'MFgzl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFgxr_\[N-m\]'] = sB+'MFgxr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFgyr_\[N-m\]'] = sB+'MFgyr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFgzr_\[N-m\]'] = sB+'MFgzr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_FFixl_\[N\]'] = sB+'FFixl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFiyl_\[N\]'] = sB+'FFiyl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFizl_\[N\]'] = sB+'FFizl_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFixr_\[N\]'] = sB+'FFixr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFiyr_\[N\]'] = sB+'FFiyr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_FFizr_\[N\]'] = sB+'FFizr_[N]'
BDSpanMap['^'+sB+r'N(\d*)_MFixl_\[N-m\]'] = sB+'MFixl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFiyl_\[N-m\]'] = sB+'MFiyl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFizl_\[N-m\]'] = sB+'MFizl_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFixr_\[N-m\]'] = sB+'MFixr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFiyr_\[N-m\]'] = sB+'MFiyr_[N-m]'
BDSpanMap['^'+sB+r'N(\d*)_MFizr_\[N-m\]'] = sB+'MFizr_[N-m]'
return BDSpanMap
def spanwiseColBD(Cols):
""" Return column info, available columns and indices that contain BD spanwise data"""
BDSpanMap = _BDSpanMap()
return find_matching_columns(Cols, BDSpanMap)
def spanwiseColED(Cols):
""" Return column info, available columns and indices that contain ED spanwise data"""
EDSpanMap=dict()
# All Outs
for sB in ['B1','B2','B3']:
EDSpanMap['^[A]*'+sB+r'N(\d*)ALx_\[m/s^2\]' ] = sB+'ALx_[m/s^2]'
EDSpanMap['^[A]*'+sB+r'N(\d*)ALy_\[m/s^2\]' ] = sB+'ALy_[m/s^2]'
EDSpanMap['^[A]*'+sB+r'N(\d*)ALz_\[m/s^2\]' ] = sB+'ALz_[m/s^2]'
EDSpanMap['^[A]*'+sB+r'N(\d*)TDx_\[m\]' ] = sB+'TDx_[m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)TDy_\[m\]' ] = sB+'TDy_[m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)TDz_\[m\]' ] = sB+'TDz_[m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)RDx_\[deg\]' ] = sB+'RDx_[deg]'
EDSpanMap['^[A]*'+sB+r'N(\d*)RDy_\[deg\]' ] = sB+'RDy_[deg]'
EDSpanMap['^[A]*'+sB+r'N(\d*)RDz_\[deg\]' ] = sB+'RDz_[deg]'
EDSpanMap['^[A]*'+sB+r'N(\d*)MLx_\[kN-m\]' ] = sB+'MLx_[kN-m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)MLy_\[kN-m\]' ] = sB+'MLy_[kN-m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)MLz_\[kN-m\]' ] = sB+'MLz_[kN-m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FLx_\[kN\]' ] = sB+'FLx_[kN]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FLy_\[kN\]' ] = sB+'FLy_[kN]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FLz_\[kN\]' ] = sB+'FLz_[kN]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FLxNT_\[kN\]' ] = sB+'FLxNT_[kN]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FLyNT_\[kN\]' ] = sB+'FLyNT_[kN]'
EDSpanMap['^[A]*'+sB+r'N(\d*)FlyNT_\[kN\]' ] = sB+'FLyNT_[kN]' # <<< Unfortunate
EDSpanMap['^[A]*'+sB+r'N(\d*)MLxNT_\[kN-m\]'] = sB+'MLxNT_[kN-m]'
EDSpanMap['^[A]*'+sB+r'N(\d*)MLyNT_\[kN-m\]'] = sB+'MLyNT_[kN-m]'
# Old
for sB in ['b1','b2','b3']:
SB=sB.upper()
EDSpanMap[r'^Spn(\d)ALx'+sB+r'_\[m/s^2\]']=SB+'ALx_[m/s^2]'
EDSpanMap[r'^Spn(\d)ALy'+sB+r'_\[m/s^2\]']=SB+'ALy_[m/s^2]'
EDSpanMap[r'^Spn(\d)ALz'+sB+r'_\[m/s^2\]']=SB+'ALz_[m/s^2]'
EDSpanMap[r'^Spn(\d)TDx'+sB+r'_\[m\]' ]=SB+'TDx_[m]'
EDSpanMap[r'^Spn(\d)TDy'+sB+r'_\[m\]' ]=SB+'TDy_[m]'
EDSpanMap[r'^Spn(\d)TDz'+sB+r'_\[m\]' ]=SB+'TDz_[m]'
EDSpanMap[r'^Spn(\d)RDx'+sB+r'_\[deg\]' ]=SB+'RDx_[deg]'
EDSpanMap[r'^Spn(\d)RDy'+sB+r'_\[deg\]' ]=SB+'RDy_[deg]'
EDSpanMap[r'^Spn(\d)RDz'+sB+r'_\[deg\]' ]=SB+'RDz_[deg]'
EDSpanMap[r'^Spn(\d)FLx'+sB+r'_\[kN\]' ]=SB+'FLx_[kN]'
EDSpanMap[r'^Spn(\d)FLy'+sB+r'_\[kN\]' ]=SB+'FLy_[kN]'
EDSpanMap[r'^Spn(\d)FLz'+sB+r'_\[kN\]' ]=SB+'FLz_[kN]'
EDSpanMap[r'^Spn(\d)MLy'+sB+r'_\[kN-m\]' ]=SB+'MLx_[kN-m]'
EDSpanMap[r'^Spn(\d)MLx'+sB+r'_\[kN-m\]' ]=SB+'MLy_[kN-m]'
EDSpanMap[r'^Spn(\d)MLz'+sB+r'_\[kN-m\]' ]=SB+'MLz_[kN-m]'
return find_matching_columns(Cols, EDSpanMap)
def spanwiseColEDTwr(Cols):
""" Return column info, available columns and indices that contain ED spanwise data"""
EDSpanMap=dict()
# All Outs
EDSpanMap[r'^TwHt(\d*)ALxt_\[m/s^2\]'] = 'ALxt_[m/s^2]'
EDSpanMap[r'^TwHt(\d*)ALyt_\[m/s^2\]'] = 'ALyt_[m/s^2]'
EDSpanMap[r'^TwHt(\d*)ALzt_\[m/s^2\]'] = 'ALzt_[m/s^2]'
EDSpanMap[r'^TwHt(\d*)TDxt_\[m\]' ] = 'TDxt_[m]'
EDSpanMap[r'^TwHt(\d*)TDyt_\[m\]' ] = 'TDyt_[m]'
EDSpanMap[r'^TwHt(\d*)TDzt_\[m\]' ] = 'TDzt_[m]'
EDSpanMap[r'^TwHt(\d*)RDxt_\[deg\]' ] = 'RDxt_[deg]'
EDSpanMap[r'^TwHt(\d*)RDyt_\[deg\]' ] = 'RDyt_[deg]'
EDSpanMap[r'^TwHt(\d*)RDzt_\[deg\]' ] = 'RDzt_[deg]'
EDSpanMap[r'^TwHt(\d*)TPxi_\[m\]' ] = 'TPxi_[m]'
EDSpanMap[r'^TwHt(\d*)TPyi_\[m\]' ] = 'TPyi_[m]'
EDSpanMap[r'^TwHt(\d*)TPzi_\[m\]' ] = 'TPzi_[m]'
EDSpanMap[r'^TwHt(\d*)RPxi_\[deg\]' ] = 'RPxi_[deg]'
EDSpanMap[r'^TwHt(\d*)RPyi_\[deg\]' ] = 'RPyi_[deg]'
EDSpanMap[r'^TwHt(\d*)RPzi_\[deg\]' ] = 'RPzi_[deg]'
EDSpanMap[r'^TwHt(\d*)FLxt_\[kN\]' ] = 'FLxt_[kN]'
EDSpanMap[r'^TwHt(\d*)FLyt_\[kN\]' ] = 'FLyt_[kN]'
EDSpanMap[r'^TwHt(\d*)FLzt_\[kN\]' ] = 'FLzt_[kN]'
EDSpanMap[r'^TwHt(\d*)MLxt_\[kN-m\]' ] = 'MLxt_[kN-m]'
EDSpanMap[r'^TwHt(\d*)MLyt_\[kN-m\]' ] = 'MLyt_[kN-m]'
EDSpanMap[r'^TwHt(\d*)MLzt_\[kN-m\]' ] = 'MLzt_[kN-m]'
return find_matching_columns(Cols, EDSpanMap)
def spanwiseColAD(Cols):
""" Return column info, available columns and indices that contain AD spanwise data"""
ADSpanMap=dict()
for sB in ['B1','B2','B3']:
ADSpanMap['^[A]*'+sB+r'N(\d*)Alpha_\[deg\]'] =sB+'Alpha_[deg]'
ADSpanMap['^[A]*'+sB+r'N(\d*)AxInd_\[-\]' ] =sB+'AxInd_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)TnInd_\[-\]' ] =sB+'TnInd_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)AxInd_qs_\[-\]' ]=sB+'AxInd_qs_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)TnInd_qs_\[-\]' ]=sB+'TnInd_qs_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)BEM_k_\[-\]' ]=sB+'BEM_k_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)BEM_kp_\[-\]' ]=sB+'BEM_kp_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)BEM_F_\[-\]' ]=sB+'BEM_F_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)BEM_CT_qs_\[-\]' ]=sB+'BEM_CT_qs_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cl_\[-\]' ] =sB+'Cl_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cd_\[-\]' ] =sB+'Cd_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cm_\[-\]' ] =sB+'Cm_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cx_\[-\]' ] =sB+'Cx_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cy_\[-\]' ] =sB+'Cy_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Cn_\[-\]' ] =sB+'Cn_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Ct_\[-\]' ] =sB+'Ct_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Re_\[-\]' ] =sB+'Re_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vrel_\[m/s\]' ] =sB+'Vrel_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Theta_\[deg\]'] =sB+'Theta_[deg]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Phi_\[deg\]' ] =sB+'Phi_[deg]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Curve_\[deg\]'] =sB+'Curve_[deg]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindx_\[m/s\]'] =sB+'Vindx_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindy_\[m/s\]'] =sB+'Vindy_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindxi_\[m/s\]'] =sB+'Vindxi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindyi_\[m/s\]'] =sB+'Vindyi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindzi_\[m/s\]'] =sB+'Vindzi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindxh_\[m/s\]'] =sB+'Vindxh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindyh_\[m/s\]'] =sB+'Vindyh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindzh_\[m/s\]'] =sB+'Vindzh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindxp_\[m/s\]'] =sB+'Vindxp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindyp_\[m/s\]'] =sB+'Vindyp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vindzp_\[m/s\]'] =sB+'Vindzp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fx_\[N/m\]' ] =sB+'Fx_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fy_\[N/m\]' ] =sB+'Fy_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fxi_\[N/m\]' ] =sB+'Fxi_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fyi_\[N/m\]' ] =sB+'Fyi_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fzi_\[N/m\]' ] =sB+'Fzi_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Mxi_\[N-m/m\]' ] =sB+'Mxi_[N-m/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Myi_\[N-m/m\]' ] =sB+'Myi_[N-m/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Mzi_\[N-m/m\]' ] =sB+'Mzi_[N-m/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fl_\[N/m\]' ] =sB+'Fl_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fd_\[N/m\]' ] =sB+'Fd_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Fn_\[N/m\]' ] =sB+'Fn_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Ft_\[N/m\]' ] =sB+'Ft_[N/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndx_\[m/s\]'] =sB+'VUndx_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndy_\[m/s\]'] =sB+'VUndy_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndz_\[m/s\]'] =sB+'VUndz_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndxi_\[m/s\]'] =sB+'VUndxi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndyi_\[m/s\]'] =sB+'VUndyi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VUndzi_\[m/s\]'] =sB+'VUndzi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisx_\[m/s\]'] =sB+'VDisx_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisy_\[m/s\]'] =sB+'VDisy_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisz_\[m/s\]'] =sB+'VDisz_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisxi_\[m/s\]'] =sB+'VDisxi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisyi_\[m/s\]'] =sB+'VDisyi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDiszi_\[m/s\]'] =sB+'VDiszi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisxh_\[m/s\]'] =sB+'VDisxh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisyh_\[m/s\]'] =sB+'VDisyh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDiszh_\[m/s\]'] =sB+'VDiszh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisxp_\[m/s\]'] =sB+'VDisxp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDisyp_\[m/s\]'] =sB+'VDisyp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)VDiszp_\[m/s\]'] =sB+'VDiszp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVx_\[m/s\]' ] =sB+'STVx_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVy_\[m/s\]' ] =sB+'STVy_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVz_\[m/s\]' ] =sB+'STVz_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVxi_\[m/s\]' ] =sB+'STVxi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVyi_\[m/s\]' ] =sB+'STVyi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVzi_\[m/s\]' ] =sB+'STVzi_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVxh_\[m/s\]' ] =sB+'STVxh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVyh_\[m/s\]' ] =sB+'STVyh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVzh_\[m/s\]' ] =sB+'STVzh_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVxp_\[m/s\]' ] =sB+'STVxp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVyp_\[m/s\]' ] =sB+'STVyp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)STVzp_\[m/s\]' ] =sB+'STVzp_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vx_\[m/s\]' ] =sB+'Vx_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vy_\[m/s\]' ] =sB+'Vy_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Vz_\[m/s\]' ] =sB+'Vz_[m/s]'
ADSpanMap['^[A]*'+sB+r'N(\d*)DynP_\[Pa\]' ] =sB+'DynP_[Pa]'
ADSpanMap['^[A]*'+sB+r'N(\d*)M_\[-\]' ] =sB+'M_[-]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Mm_\[N-m/m\]' ] =sB+'Mm_[N-m/m]'
ADSpanMap['^[A]*'+sB+r'N(\d*)Gam_\[' ] =sB+'Gam_[m^2/s]' #DBGOuts
# DEPRECIATED
ADSpanMap['^[A]*'+sB+r'N(\d*)AOA_\[deg\]' ] =sB+'Alpha_[deg]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)AIn_\[deg\]' ] =sB+'AxInd_[-]' # DBGOuts NOTE BUG Unit
ADSpanMap['^[A]*'+sB+r'N(\d*)ApI_\[deg\]' ] =sB+'TnInd_[-]' # DBGOuts NOTE BUG Unit
ADSpanMap['^[A]*'+sB+r'N(\d*)AIn_\[-\]' ] =sB+'AxInd_[-]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)ApI_\[-\]' ] =sB+'TnInd_[-]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)Uin_\[m/s\]' ] =sB+'Uin_[m/s]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)Uit_\[m/s\]' ] =sB+'Uit_[m/s]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)Uir_\[m/s\]' ] =sB+'Uir_[m/s]' # DBGOuts
ADSpanMap['^[A]*'+sB+r'N(\d*)Twst_\[deg\]' ] =sB+'Twst_[deg]' #DBGOuts
# --- AD 14
ADSpanMap[r'^Alpha(\d*)_\[deg\]' ]='Alpha_[deg]'
ADSpanMap[r'^DynPres(\d*)_\[Pa\]' ]='DynPres_[Pa]'
ADSpanMap[r'^CLift(\d*)_\[-\]' ]='CLift_[-]'
ADSpanMap[r'^CDrag(\d*)_\[-\]' ]='CDrag_[-]'
ADSpanMap[r'^CNorm(\d*)_\[-\]' ]='CNorm_[-]'
ADSpanMap[r'^CTang(\d*)_\[-\]' ]='CTang_[-]'
ADSpanMap[r'^CMomt(\d*)_\[-\]' ]='CMomt_[-]'
ADSpanMap[r'^Pitch(\d*)_\[deg\]' ]='Pitch_[deg]'
ADSpanMap[r'^AxInd(\d*)_\[-\]' ]='AxInd_[-]'
ADSpanMap[r'^TanInd(\d*)_\[-\]' ]='TanInd_[-]'
ADSpanMap[r'^ForcN(\d*)_\[N\]' ]='ForcN_[N]'
ADSpanMap[r'^ForcT(\d*)_\[N\]' ]='ForcT_[N]'
ADSpanMap[r'^Pmomt(\d*)_\[N-m\]' ]='Pmomt_[N-N]'
ADSpanMap[r'^ReNum(\d*)_\[x10^6\]']='ReNum_[x10^6]'
ADSpanMap[r'^Gamma(\d*)_\[m^2/s\]']='Gamma_[m^2/s]'
return find_matching_columns(Cols, ADSpanMap)
def insert_extra_columns_AD(dfRad, tsAvg, vr=None, rho=None, R=None, nB=None, chord=None):
# --- Compute additional values (AD15 only)
if dfRad is None:
return None
if dfRad.shape[1]==0:
return dfRad
if chord is not None:
if vr is not None:
chord =chord[0:len(dfRad)]
for sB in ['B1','B2','B3']:
for coord in ['i','p','h']:
for comp in ['x','y','z']:
s=comp+coord
try:
dfRad[sB+'Vflw{}_[m/s]'.format(s)] = dfRad[sB+'VDis{}_[m/s]'.format(s)] - dfRad[sB+'STV{}_[m/s]'.format(s)]
except:
pass
for coord in ['i','p','h']:
for comp in ['x','y','z']:
s=comp+coord
try:
dfRad[sB+'Vrel{}_[m/s]'.format(s)] = dfRad[sB+'VDis{}_[m/s]'.format(s)] - dfRad[sB+'STV{}_[m/s]'.format(s)] + dfRad[sB+'Vind{}_[m/s]'.format(s)]
except:
pass
try:
s='p'
dfRad[sB+'phi_{}_[def]'.format(s)] = np.arctan2(dfRad[sB+'Vrelx{}_[m/s]'.format(s)], dfRad[sB+'Vrely{}_[m/s]'.format(s)])*180/np.pi
except:
pass
try:
vr_bar=vr/R
Fx = dfRad[sB+'Fx_[N/m]']
U0 = tsAvg['Wind1VelX_[m/s]']
Ct=nB*Fx/(0.5 * rho * 2 * U0**2 * np.pi * vr)
Ct[vr<0.01*R] = 0
dfRad[sB+'Ctloc_[-]'] = Ct
CT=2*np.trapz(vr_bar*Ct,vr_bar)
dfRad[sB+'CtAvg_[-]']= CT*np.ones(vr.shape)
except:
pass
try:
dfRad[sB+'Gamma_[m^2/s]'] = 1/2 * chord* dfRad[sB+'Vrel_[m/s]'] * dfRad[sB+'Cl_[-]']
except:
pass
try:
if not sB+'Vindx_[m/s]' in dfRad.columns:
dfRad[sB+'Vindx_[m/s]']= -dfRad[sB+'AxInd_[-]'].values * dfRad[sB+'Vx_[m/s]'].values
dfRad[sB+'Vindy_[m/s]']= dfRad[sB+'TnInd_[-]'].values * dfRad[sB+'Vy_[m/s]'].values
except:
pass
return dfRad
def spanwisePostPro(FST_In=None,avgMethod='constantwindow',avgParam=5,out_ext='.outb',df=None):
"""
Postprocess FAST radial data.
if avgMethod is not None: Average the time series, return a dataframe nr x nColumns
INPUTS:
- FST_IN: Fast .fst input file
- avgMethod='periods', avgParam=2: average over 2 last periods, Needs Azimuth sensors!!!
- avgMethod='constantwindow', avgParam=5: average over 5s of simulation
- postprofile: outputfile to write radial data
"""
# --- Opens Fast output and performs averaging
if df is None:
filename =FST_In.replace('.fst',out_ext).replace('.dvr',out_ext)
df = FASTOutputFile(filename).toDataFrame()
returnDF=True
else:
filename=''
returnDF=False
# NOTE: spanwise script doest not support duplicate columns
df = df.loc[:,~df.columns.duplicated()]
if avgMethod is not None:
dfAvg = averageDF(df,avgMethod=avgMethod ,avgParam=avgParam, filename=filename) # NOTE: average 5 last seconds
else:
dfAvg=df
# --- The script assume '_' between units and colnames
Cols= dfAvg.columns
# --- Extract info (e.g. radial positions) from Fast input file
# We don't have a .fst input file, so we'll rely on some default values for "r"
rho = 1.225
chord = None
# --- Extract radial positions of output channels
d = FASTSpanwiseOutputs(FST_In, OutputCols=Cols)
r_AD = d['r_AD']
r_ED_bld = d['r_ED_bld']
r_ED_twr = d['r_ED_twr']
r_BD = d['r_BD']
IR_AD = d['IR_AD']
IR_ED_bld = d['IR_ED_bld']
IR_ED_twr = d['IR_ED_twr']
IR_BD = d['IR_BD']
TwrLen = d['TwrLen']
R = d['R']
r_hub = d['r_hub']
fst = d['fst']
if R is None:
R=1
try:
chord = fst.AD.Bld1['BldAeroNodes'][:,5] # Full span
except:
pass
try:
rho = fst.AD['Rho']
except:
try:
rho = fst.AD['AirDens']
except:
pass
#print('r_AD:', r_AD)
#print('r_ED:', r_ED)
#print('r_BD:', r_BD)
#print('I_AD:', IR_AD)
#print('I_ED:', IR_ED)
#print('I_BD:', IR_BD)
out = {}
if returnDF:
out['df'] = df
out['dfAvg'] = dfAvg
# --- Extract radial data and export to csv if needed
# --- AD
ColsInfoAD, nrMaxAD = spanwiseColAD(Cols)
dfRad_AD = extract_spanwise_data(ColsInfoAD, nrMaxAD, df=None, ts=dfAvg.iloc[0])
dfRad_AD = insert_extra_columns_AD(dfRad_AD, dfAvg.iloc[0], vr=r_AD, rho=rho, R=R, nB=3, chord=chord)
dfRad_AD = insert_spanwise_columns(dfRad_AD, r_AD, R=R, IR=IR_AD)
out['AD'] = dfRad_AD
# --- ED Bld
ColsInfoED, nrMaxED = spanwiseColED(Cols)
dfRad_ED = extract_spanwise_data(ColsInfoED, nrMaxED, df=None, ts=dfAvg.iloc[0])
dfRad_ED = insert_spanwise_columns(dfRad_ED, r_ED_bld, R=R, IR=IR_ED_bld)
out['ED_bld'] = dfRad_ED
# --- ED Twr
ColsInfoED, nrMaxEDt = spanwiseColEDTwr(Cols)
dfRad_EDt = extract_spanwise_data(ColsInfoED, nrMaxEDt, df=None, ts=dfAvg.iloc[0])
dfRad_EDt2 = insert_spanwise_columns(dfRad_EDt, r_ED_twr, R=TwrLen, IR=IR_ED_twr, sspan='H',sspan_bar='H/L')
# TODO we could insert TwrBs and TwrTp quantities here...
out['ED_twr'] = dfRad_EDt
# --- BD
ColsInfoBD, nrMaxBD = spanwiseColBD(Cols)
dfRad_BD = extract_spanwise_data(ColsInfoBD, nrMaxBD, df=None, ts=dfAvg.iloc[0])
dfRad_BD = insert_spanwise_columns(dfRad_BD, r_BD, R=R, IR=IR_BD)
out['BD'] = dfRad_BD
# --- SubDyn
try:
# NOTE: fst might be None
sd = SubDyn(fst.SD)
#MN = sd.pointsMN
MNout, MJout = sd.memberPostPro(dfAvg)
out['SD_MembersOut'] = MNout
out['SD_JointsOut'] = MJout
except:
out['SD_MembersOut'] = None
out['SD_JointsOut'] = None
# Combine all into a dictionary
return out
def radialAvg(filename, avgMethod, avgParam, raw_name='', df=None, raiseException=True):
"""
Wrapper function, for instance used by pyDatView apply either:
spanwisePostPro or spanwisePostProFF (FAST.Farm)
"""
base,out_ext = os.path.splitext(filename)
if df is None:
df = FASTOutputFile(filename).toDataFrame()
# --- Detect if it's a FAST Farm file
sCols = ''.join(df.columns)
if sCols.find('WkDf')>1 or sCols.find('CtT')>0:
# --- FAST FARM files
Files=[base+ext for ext in ['.fstf','.FSTF','.Fstf','.fmas','.FMAS','.Fmas'] if os.path.exists(base+ext)]
if len(Files)==0:
fst_in=None
#raise Exception('Error: No .fstf file found with name: '+base+'.fstf')
else:
fst_in=Files[0]
dfRad,_,dfDiam = fastfarm.spanwisePostProFF(fst_in,avgMethod=avgMethod,avgParam=avgParam,D=1,df=df)
dfs_new = [dfRad,dfDiam]
names_new=[raw_name+'_rad', raw_name+'_diam']
else:
# --- FAST files
# HACK for AD file to find the right .fst file
iDotAD=base.lower().find('.ad')
if iDotAD>1:
base=base[:iDotAD]
#
Files=[base+ext for ext in ['.fst','.FST','.Fst','.dvr','.Dvr','.DVR'] if os.path.exists(base+ext)]
if len(Files)==0:
fst_in=None
#raise Exception('Error: No .fst file found with name: '+base+'.fst')
else:
fst_in=Files[0]
try:
out = spanwisePostPro(fst_in, avgMethod=avgMethod, avgParam=avgParam, out_ext=out_ext, df = df)
dfRadED=out['ED_bld']; dfRadAD = out['AD']; dfRadBD = out['BD']
dfs_new = [dfRadAD, dfRadED, dfRadBD]
names_new=[raw_name+'_AD', raw_name+'_ED', raw_name+'_BD']
except:
if raiseException:
raise
else:
print('[WARN] radialAvg failed for filename {}'.format(filename))
dfs_new =[None]
names_new=['']
return dfs_new, names_new
def spanwisePostProRows(df, FST_In=None):
"""
Returns a 3D matrix: n x nSpan x nColumn where df is of size n x mColumn
NOTE: this is really not optimal. Spanwise columns should be extracted only once..
"""
# --- Extract info (e.g. radial positions) from Fast input file
# We don't have a .fst input file, so we'll rely on some default values for "r"
rho = 1.225
chord = None
# --- Extract radial positions of output channels
d = FASTSpanwiseOutputs(FST_In, OutputCols=df.columns.values)
r_AD = d['r_AD']
r_ED_bld = d['r_ED_bld']
r_ED_twr = d['r_ED_twr']
r_BD = d['r_BD']
IR_AD = d['IR_AD']
IR_ED_bld = d['IR_ED_bld']
IR_ED_twr = d['IR_ED_twr']
IR_BD = d['IR_BD']
TwrLen = d['TwrLen']
R = d['R']
r_hub = d['r_hub']
fst = d['fst']
#print('r_AD:', r_AD)
#print('r_ED:', r_ED)
#print('r_BD:', r_BD)
if R is None:
R=1
try:
chord = fst.AD.Bld1['BldAeroNodes'][:,5] # Full span
except:
pass
try:
rho = fst.AD['Rho']
except:
try:
rho = fst.AD['AirDens']
except: