|
11 | 11 | \olsection{L\"ob's Theorem}
|
12 | 12 |
|
13 | 13 | The G\"odel sentence for a theory~$\Th{T}$ is a fixed point of $\lnot
|
14 |
| -\OProv[T](y)$, i.e., !!a{sentence}~$!G$ such that |
| 14 | +\OProv[\Th{T}](y)$, i.e., !!a{sentence}~$!G$ such that |
15 | 15 | \[
|
16 |
| -\Th{T} \Proves \lnot \OProv[T](\gn{!G}) \liff !G. |
| 16 | +\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G}) \liff !G. |
17 | 17 | \]
|
18 | 18 | It is not !!{derivable}, because if $\Th{T} \Proves !G$, (a) by !!{derivability}
|
19 |
| -condition~(1), $\Th{T} \Proves \OProv[T](\gn{!G})$, and (b) $\Th{T} |
20 |
| -\Proves !G$ together with $\Th{T} \Proves \lnot \OProv[T](\gn{!G}) |
21 |
| -\liff !G$ gives $\Th{T} \Proves \lnot \OProv[T](\gn{!G})$, and so |
| 19 | +condition~(1), $\Th{T} \Proves \OProv[\Th{T}](\gn{!G})$, and (b) $\Th{T} |
| 20 | +\Proves !G$ together with $\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G}) |
| 21 | +\liff !G$ gives $\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G})$, and so |
22 | 22 | $\Th{T}$ would be inconsistent. Now it is natural to ask about the
|
23 |
| -status of a fixed point of $\OProv[T](y)$, i.e., !!a{sentence}~$!H$ |
| 23 | +status of a fixed point of $\OProv[\Th{T}](y)$, i.e., !!a{sentence}~$!H$ |
24 | 24 | such that
|
25 | 25 | \[
|
26 |
| -\Th{T} \Proves \OProv[T](\gn{!H}) \liff !H. |
| 26 | +\Th{T} \Proves \OProv[\Th{T}](\gn{!H}) \liff !H. |
27 | 27 | \]
|
28 |
| -If it were !!{derivable}, $\Th{T} \Proves \OProv[T](\gn{!H})$ by |
| 28 | +If it were !!{derivable}, $\Th{T} \Proves \OProv[\Th{T}](\gn{!H})$ by |
29 | 29 | condition~(1), but the same conclusion follows if we apply modus
|
30 | 30 | ponens to the equivalence above. Hence, we don't get that $\Th{T}$ is
|
31 | 31 | inconsistent, at least not by the same argument as in the case of the
|
|
34 | 34 |
|
35 | 35 | We can make headway on this question if we generalize it a bit. The
|
36 | 36 | left-to-right direction of the fixed point equivalence,
|
37 |
| -$\OProv[T](\gn{!H}) \lif !H$, is an instance of a general schema |
38 |
| -called a \emph{reflection principle}: $\OProv[T](\gn{!A}) \lif !A$. |
| 37 | +$\OProv[\Th{T}](\gn{!H}) \lif !H$, is an instance of a general schema |
| 38 | +called a \emph{reflection principle}: $\OProv[\Th{T}](\gn{!A}) \lif !A$. |
39 | 39 | It is called that because it expresses, in a sense, that $\Th{T}$ can
|
40 | 40 | ``reflect'' about what it can !!{derive}; basically it says, ``If $\Th{T}$
|
41 | 41 | can !!{derive}~$!A$, then~$!A$ is true,'' for any~$!A$. This is true for
|
|
47 | 47 |
|
48 | 48 | \begin{thm}\ollabel{thm:lob}
|
49 | 49 | Let $\Th{T}$ be !!a{axiomatizable} theory extending $\Th{Q}$, and
|
50 |
| -suppose $\OProv[T](y)$ is a formula satisfying conditions P1--P3 from |
51 |
| -\olref[2in]{sec}. If $\Th{T}$ !!{derive}s $\OProv[T](\gn{!A}) \lif !A$, |
| 50 | +suppose $\OProv[\Th{T}](y)$ is a formula satisfying conditions P1--P3 from |
| 51 | +\olref[2in]{sec}. If $\Th{T}$ !!{derive}s $\OProv[\Th{T}](\gn{!A}) \lif !A$, |
52 | 52 | then in fact $\Th{T}$ !!{derive}s $!A$.
|
53 | 53 | \end{thm}
|
54 | 54 |
|
55 | 55 | Put differently, if $\Th{T} \Proves/ !A$, then $\Th{T} \Proves/
|
56 |
| -\OProv[T](\gn{!A}) \lif !A$. This result is known as L\"ob's |
| 56 | +\OProv[\Th{T}](\gn{!A}) \lif !A$. This result is known as L\"ob's |
57 | 57 | theorem.
|
58 | 58 |
|
59 | 59 | \begin{explain}
|
|
78 | 78 | A formalization of this idea, replacing ``is true'' with ``is
|
79 | 79 | !!{derivable},'' and ``Santa Claus exists'' with~$!A$, yields the proof of
|
80 | 80 | L\"ob's theorem. The trick is to apply the fixed-point lemma to the
|
81 |
| -!!{formula}~$\OProv[T](y) \lif !A$. The fixed point of that |
| 81 | +!!{formula}~$\OProv[\Th{T}](y) \lif !A$. The fixed point of that |
82 | 82 | corresponds to the sentence~$X$ in the preceding sketch.
|
83 | 83 | \end{explain}
|
84 | 84 |
|
85 | 85 | \begin{proof}[Proof of \olref{thm:lob}]
|
86 | 86 | Suppose $!A$ is !!a{sentence} such that $\Th{T}$ !!{derive}s
|
87 |
| -$\OProv[T](\gn{!A}) \lif !A$. Let $!B(y)$ be the !!{formula}~$\OProv[T](y) |
| 87 | +$\OProv[\Th{T}](\gn{!A}) \lif !A$. Let $!B(y)$ be the !!{formula}~$\OProv[\Th{T}](y) |
88 | 88 | \lif !A$, and use the fixed-point lemma to find !!a{sentence}~$!D$
|
89 | 89 | such that $\Th{T}$ !!{derive}s $!D \liff !B(\gn{!D})$. Then each of the
|
90 | 90 | following is !!{derivable} in $\Th{T}$:
|
91 | 91 | \begin{align}
|
92 |
| - & !D \liff (\OProv[T](\gn{!D}) \lif !A) \ollabel{L-1}\\ |
| 92 | + & !D \liff (\OProv[\Th{T}](\gn{!D}) \lif !A) \ollabel{L-1}\\ |
93 | 93 | & \qquad \text{$!D$ is a fixed point of~$!B(y)$}\notag \\
|
94 |
| - & !D \lif (\OProv[T](\gn{!D}) \lif !A) \ollabel{L-2}\\ |
| 94 | + & !D \lif (\OProv[\Th{T}](\gn{!D}) \lif !A) \ollabel{L-2}\\ |
95 | 95 | & \qquad\text{from \olref{L-1}}\notag\\
|
96 |
| - & \OProv[T](\gn{!D \lif (\OProv[T](\gn{!D}) \lif !A)}) \ollabel{L-3}\\ |
| 96 | + & \OProv[\Th{T}](\gn{!D \lif (\OProv[\Th{T}](\gn{!D}) \lif !A)}) \ollabel{L-3}\\ |
97 | 97 | & \qquad \text{from \olref{L-2} by condition P1}\notag \\
|
98 |
| - & \OProv[T](\gn{!D}) \lif \OProv[T](\gn{\OProv[T](\gn{!D}) \lif !A}) |
| 98 | + & \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D}) \lif !A}) |
99 | 99 | \ollabel{L-4}\\
|
100 | 100 | &\qquad \text{from \olref{L-3} using condition P2}\notag \\
|
101 |
| - & \OProv[T](\gn{!D}) \lif (\OProv[T](\gn{\OProv[T](\gn{!D})}) \lif \OProv[T](\gn{!A})) \ollabel{L-5}\\ |
| 101 | + & \OProv[\Th{T}](\gn{!D}) \lif (\OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D})}) \lif \OProv[\Th{T}](\gn{!A})) \ollabel{L-5}\\ |
102 | 102 | &\qquad \text{from \olref{L-4} using P2 again} \notag\\
|
103 |
| -& \OProv[T](\gn{!D}) \lif \OProv[T](\gn{\OProv[T](\gn{!D})}) \ollabel{L-6}\\ |
| 103 | +& \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D})}) \ollabel{L-6}\\ |
104 | 104 | & \qquad\text{by !!{derivability} condition P3} \notag\\
|
105 |
| - & \OProv[T](\gn{!D}) \lif \OProv[T](\gn{!A}) \ollabel{L-7} \\ |
| 105 | + & \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{!A}) \ollabel{L-7} \\ |
106 | 106 | &\qquad\text{from \olref{L-5} and \olref{L-6}}\notag\\
|
107 |
| - & \OProv[T](\gn{!A}) \lif !A \ollabel{L-8}\\ |
| 107 | + & \OProv[\Th{T}](\gn{!A}) \lif !A \ollabel{L-8}\\ |
108 | 108 | &\qquad\text{by assumption of the theorem} \notag\\
|
109 |
| - & \OProv[T](\gn{!D}) \lif !A \ollabel{L-9}\\ |
| 109 | + & \OProv[\Th{T}](\gn{!D}) \lif !A \ollabel{L-9}\\ |
110 | 110 | &\qquad\text{from \olref{L-7} and \olref{L-8}}\notag\\
|
111 |
| - & (\OProv[T](\gn{!D}) \lif !A) \lif !D \ollabel{L-10}\\ |
| 111 | + & (\OProv[\Th{T}](\gn{!D}) \lif !A) \lif !D \ollabel{L-10}\\ |
112 | 112 | & \qquad \text{from \olref{L-1}}\notag \\
|
113 | 113 | & !D \ollabel{L-11}\\
|
114 | 114 | & \qquad\text{from \olref{L-9} and \olref{L-10}}\notag \\
|
115 |
| - & \OProv[T](\gn{!D}) \ollabel{L-12}\\ |
| 115 | + & \OProv[\Th{T}](\gn{!D}) \ollabel{L-12}\\ |
116 | 116 | & \qquad\text{from \olref{L-11} by condition~P1}\notag \\
|
117 | 117 | & !A \qquad\qquad\text{from \olref{L-8} and \olref{L-12}}\notag
|
118 | 118 | \end{align}
|
|
121 | 121 | With L\"ob's theorem in hand, there is a short proof of the second
|
122 | 122 | incompleteness theorem (for theories having !!a{derivability} predicate
|
123 | 123 | satisfying conditions P1--P3): if $\Th{T} \Proves
|
124 |
| -\OProv[T](\gn{\lfalse}) \lif \lfalse$, then $\Th{T} \Proves \lfalse$. |
| 124 | +\OProv[\Th{T}](\gn{\lfalse}) \lif \lfalse$, then $\Th{T} \Proves \lfalse$. |
125 | 125 | If $\Th{T}$ is consistent, $\Th{T} \Proves/ \lfalse$. So, $\Th{T}
|
126 |
| -\Proves/ \OProv[T](\gn{\lfalse}) \lif \lfalse$, i.e., $\Th{T} \Proves/ |
| 126 | +\Proves/ \OProv[\Th{T}](\gn{\lfalse}) \lif \lfalse$, i.e., $\Th{T} \Proves/ |
127 | 127 | \OCon[\Th{T}]$. We can also apply it to show that~$!H$, the fixed
|
128 |
| -point of $\OProv[T](x)$, is !!{derivable}. For since |
| 128 | +point of $\OProv[\Th{T}](x)$, is !!{derivable}. For since |
129 | 129 | \begin{align*}
|
130 |
| - \Th{T} & \Proves \OProv[T](\gn{!H}) \liff !H\\ |
| 130 | + \Th{T} & \Proves \OProv[\Th{T}](\gn{!H}) \liff !H\\ |
131 | 131 | \intertext{in particular}
|
132 |
| - \Th{T} & \Proves \OProv[T](\gn{!H}) \lif !H |
| 132 | + \Th{T} & \Proves \OProv[\Th{T}](\gn{!H}) \lif !H |
133 | 133 | \end{align*}
|
134 | 134 | and so by L\"ob's theorem, $\Th{T} \Proves !H$.
|
135 | 135 |
|
|
139 | 139 |
|
140 | 140 | \begin{prob}
|
141 | 141 | Let $\Th{T}$ be a computably axiomatized theory, and
|
142 |
| -let $\OProv[T]$ be !!a{derivability} predicate for $\Th{T}$. Consider the |
| 142 | +let $\OProv[\Th{T}]$ be !!a{derivability} predicate for $\Th{T}$. Consider the |
143 | 143 | following four statements:
|
144 | 144 | \begin{enumerate}
|
145 |
| -\item If $T \Proves !A$, then $T \Proves \OProv[T](\gn{!A})$. |
146 |
| -\item $T \Proves !A \lif \OProv[T](\gn{!A})$. |
147 |
| -\item If $T \Proves \OProv[T](\gn{!A})$, then $T \Proves !A$. |
148 |
| -\item $T \Proves \OProv[T](\gn{!A}) \lif !A$ |
| 145 | +\item If $T \Proves !A$, then $T \Proves \OProv[\Th{T}](\gn{!A})$. |
| 146 | +\item $T \Proves !A \lif \OProv[\Th{T}](\gn{!A})$. |
| 147 | +\item If $T \Proves \OProv[\Th{T}](\gn{!A})$, then $T \Proves !A$. |
| 148 | +\item $T \Proves \OProv[\Th{T}](\gn{!A}) \lif !A$ |
149 | 149 | \end{enumerate}
|
150 | 150 | Under what conditions are each of these statements true?
|
151 | 151 | \end{prob}
|
|
0 commit comments