Skip to content

Commit 48a9272

Browse files
committed
typos reported by W25 Logic III students
1 parent 32088cc commit 48a9272

File tree

17 files changed

+148
-138
lines changed

17 files changed

+148
-138
lines changed

content/computability/computability-theory/computable-sets.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
confused!{} \iftag{TMs}{The Turing machine computing a partial function
3636
returns the output of the function, for input values at which the
3737
function is defined; the Turing machine computing a set returns
38-
either 1 or 0, after deciding whether or not the input value is in
38+
either $1$ or~$0$, after deciding whether or not the input value is in
3939
the set or not.}{}
4040
\end{explain}
4141

content/computability/computability-theory/introduction.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111

1212
The branch of logic known as \emph{computability theory} deals with
1313
issues having to do with the computability, or relative computability,
14-
of functions and sets. It is a evidence of Kleene's influence
14+
of functions and sets. It is evidence of Kleene's influence
1515
that the subject used to be known as \emph{recursion theory}, and
1616
today, both names are commonly used.
1717

content/computability/computability-theory/normal-form.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626

2727
\begin{thm}[Kleene's Normal Form Theorem]
2828
\ollabel{thm:normal-form}
29-
There are a primitive recursive relation~$T(e, x, s)$ and a primitive
29+
There is a primitive recursive relation~$T(e, x, s)$ and a primitive
3030
recursive function~$U(s)$, with the following property: if $f$ is any
3131
partial computable function, then for some~$e$,
3232
\[

content/computability/recursive-functions/composition.tex

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,10 +10,9 @@
1010
\olsection{Composition}
1111

1212
If $f$ and $g$ are two one-place functions of natural numbers, we can
13-
compose them: $h(x) = g(f(x))$. The new
14-
function~$h(x)$ is then defined by \emph{composition} from the
15-
functions $f$ and~$g$. We'd like to generalize this to functions of
16-
more than one argument.
13+
compose them: $h(x) = f(g(x))$. The new function~$h(x)$ is then
14+
defined by \emph{composition} from the functions $f$ and~$g$. We'd
15+
like to generalize this to functions of more than one argument.
1716

1817
Here's one way of doing this: suppose $f$ is a $k$-place function,
1918
and $g_0$, \dots, $g_{k-1}$ are $k$ functions which are all

content/computability/recursive-functions/sequences.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -66,8 +66,8 @@
6666
1 + \bmin{i < s}{R(i, s)} & \text{otherwise}
6767
\end{cases}
6868
\]
69-
We can use bounded minimization, since there is only one $i$ that
70-
satisfies $R(s, i)$ when $s$ is a code of a sequence, and if $i$
69+
We can use bounded minimization here, since there is only one $i$ that
70+
satisfies $R(i,s)$ when $s$~is a code of a sequence, and if $i$
7171
exists it is less than~$s$ itself.
7272
\end{proof}
7373

content/incompleteness/arithmetization-syntax/introduction.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@
4343
number.
4444

4545
By coding sequences of symbols as sequences of their codes, and by
46-
chosing a system of coding sequences that can be dealt with using
46+
choosing a system of coding sequences that can be dealt with using
4747
computable functions, we can then also deal with G\"odel numbers using
4848
computable functions. In practice, all the relevant functions will be
4949
primitive recursive. For instance, computing the length of a sequence

content/incompleteness/arithmetization-syntax/proofs-in-nd.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -121,7 +121,7 @@
121121
!!{derivation}s is a special case of the coding of trees introduced in
122122
\olref[cmp][rec][tre]{sec}, so the primitive recursive function
123123
$\fn{SubtreeSeq}(d)$ gives a sequence of G\"odel numbers of all
124-
sub-!!{derivation}s of~$d$ (of length a most $d$). So we can
124+
sub-!!{derivation}s of~$d$ (of length at most $d$). So we can
125125
define
126126
\[
127127
\fn{Assum}(x, d, n) \defiff \bexists{i<d}{(\fn{SubtreeSeq}(d))_i =
@@ -174,7 +174,7 @@
174174
\concat \fn{EndFmla}((d)_2) \concat \Gn{)}.
175175
\end{multline*}
176176

177-
Another simple example if the $\Intro\eq$ rule. Here the premise is
177+
Another simple example is the $\Intro\eq$ rule. Here the premise is
178178
an empty !!{derivation}, i.e., $(d)_1 = 0$, and no discharge label,
179179
i.e., $n=0$. However, $!A$ must be of the form $\eq[t][t]$, for a
180180
closed term~$t$. Here, a primitive recursive definition is
@@ -295,7 +295,7 @@
295295
\bexists{s<\fn{SubtreeSeq}(d)}{(\fn{Subseq}(s, \fn{SubtreeSeq}(d))
296296
\land (s)_0 = d \land {}} \\
297297
\bexists{n<d}{((s)_{\len{s} \tsub 1} = \tuple{0, z, n} \land {}}\\
298-
\bforall{i<(\len{s} \tsub 1)}{(\fn{Subderiv}((s)_{i+1}, (s)_i)] \land {}}\\
298+
\bforall{i<(\len{s} \tsub 1)}{(\fn{Subderiv}((s)_{i+1}, (s)_i) \land {}}\\
299299
\fn{DischargeLabel}((s)_{i+1}) \neq n))).
300300
\end{multline*}
301301
\end{proof}

content/incompleteness/incompleteness-provability/first-incompleteness-thm.tex

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -17,34 +17,34 @@
1717
represents computable functions and relations.
1818

1919
We have argued that, given a reasonable coding of formulas and proofs
20-
as numbers, the relation $\Prf[T](x,y)$ is computable, where
21-
$\Prf[T](x,y)$ holds if and only if $x$ is the G\"odel number of
20+
as numbers, the relation $\Prf[\Th{T}](x,y)$ is computable, where
21+
$\Prf[\Th{T}](x,y)$ holds if and only if $x$ is the G\"odel number of
2222
!!a{derivation} of the !!{formula} with G\"odel number~$y$
2323
in~$\Th{T}$. In fact, for the particular theory that G\"odel had in
2424
mind, G\"odel was able to show that this relation is primitive
2525
recursive, using the list of 45 functions and relations in his
26-
paper. The 45th relation, $x B y$, is just $\Prf[T](x,y)$ for his
26+
paper. The 45th relation, $x B y$, is just $\Prf[\Th{T}](x,y)$ for his
2727
particular choice of~$\Th{T}$. Remember that where G\"odel uses the
2828
word ``recursive'' in his paper, we would now use the phrase
2929
``primitive recursive.''
3030

31-
Since $\Prf[T](x,y)$ is computable, it is representable in $\Th{T}$. We
32-
will use $\OPrf[T](x,y)$ to refer to the formula that represents
33-
it. Let $\OProv[T](y)$ be the formula
34-
$\lexists[x][\OPrf[T](x,y)]$. This describes the 46th relation,
31+
Since $\Prf[\Th{T}](x,y)$ is computable, it is representable in $\Th{T}$. We
32+
will use $\OPrf[\Th{T}](x,y)$ to refer to the formula that represents
33+
it. Let $\OProv[\Th{T}](y)$ be the formula
34+
$\lexists[x][\OPrf[\Th{T}](x,y)]$. This describes the 46th relation,
3535
$\fn{Bew}(y)$, on G\"odel's list. As G\"odel notes, this is the only
3636
relation that ``cannot be asserted to be recursive.'' What he
3737
probably meant is this: from the definition, it is not clear that it
3838
is computable; and later developments, in fact, show that it isn't.
3939

4040
Let $\Th{T}$ be an !!{axiomatizable} theory containing~$\Th{Q}$. Then
41-
$\Prf[T](x, y)$ is decidable, hence representable in~$\Th{Q}$ by
42-
!!a{formula}~$\OPrf[T](x, y)$. Let $\OProv[T](y)$ be the formula we
41+
$\Prf[\Th{T}](x, y)$ is decidable, hence representable in~$\Th{Q}$ by
42+
!!a{formula}~$\OPrf[\Th{T}](x, y)$. Let $\OProv[\Th{T}](y)$ be the formula we
4343
described above. By the fixed-point lemma, there is a formula
4444
$!G_\Th{T}$ such that $\Th{Q}$ (and hence $\Th{T}$) !!{derive}s
4545
\begin{equation}
4646
\ollabel{eqn:qpf}
47-
!G_\Th{T} \liff \lnot \OProv[T](\gn{!G_\Th{T}}).
47+
!G_\Th{T} \liff \lnot \OProv[\Th{T}](\gn{!G_\Th{T}}).
4848
\end{equation}
4949
Note that $!G_\Th{T}$ says, in essence, ``$!G_\Th{T}$ is not
5050
!!{derivable} in~$\Th{T}$.''
@@ -56,11 +56,11 @@
5656

5757
\begin{proof}
5858
Suppose $\Th{T}$ !!{derive}s $!G_\Th{T}$. Then there \emph{is}
59-
!!a{derivation}, and so, for some number $m$, the relation $\Prf[T](m,
59+
!!a{derivation}, and so, for some number $m$, the relation $\Prf[\Th{T}](m,
6060
\Gn{!G_\Th{T}})$ holds. But then $\Th{Q}$ !!{derive}s the sentence
61-
$\OPrf[T](\num m, \gn{!G_\Th{T}})$. So $\Th{Q}$ !!{derive}s
62-
$\lexists[x][\OPrf[T](x,\gn{!G_\Th{T}})]$, which is, by definition,
63-
$\OProv[T](\gn{!G_\Th{T}})$. By \olref{eqn:qpf}, $\Th{Q}$ !!{derive}s
61+
$\OPrf[\Th{T}](\num m, \gn{!G_\Th{T}})$. So $\Th{Q}$ !!{derive}s
62+
$\lexists[x][\OPrf[\Th{T}](x,\gn{!G_\Th{T}})]$, which is, by definition,
63+
$\OProv[\Th{T}](\gn{!G_\Th{T}})$. By \olref{eqn:qpf}, $\Th{Q}$ !!{derive}s
6464
$\lnot !G_\Th{T}$, and since $\Th{T}$ extends $\Th{Q}$, so
6565
does~$\Th{T}$. We have shown that if $\Th{T}$ !!{derive}s $!G_\Th{T}$, then
6666
it also !!{derive}s $\lnot !G_\Th{T}$, and hence it would be inconsistent.
@@ -95,12 +95,12 @@
9595
$!G_\Th{T}$ by \olref{lem:cons-G-unprov}. Since there is no
9696
!!{derivation} of $!G_\Th{T}$ in $\Th{T}$, $\Th{Q}$ !!{derive}s
9797
\[
98-
\lnot \OPrf[T](\num 0, \gn{!G_\Th{T}}), \lnot \OPrf[T](\num 1,
99-
\gn{!G_\Th{T}}), \lnot \OPrf[T](\num 2, \gn{!G_\Th{T}}), \dots
98+
\lnot \OPrf[\Th{T}](\num 0, \gn{!G_\Th{T}}), \lnot \OPrf[\Th{T}](\num 1,
99+
\gn{!G_\Th{T}}), \lnot \OPrf[\Th{T}](\num 2, \gn{!G_\Th{T}}), \dots
100100
\]
101101
and so does~$\Th{T}$. On the other hand, by \olref{eqn:qpf}, $\lnot
102102
!G_\Th{T}$ is equivalent to
103-
$\lexists[x][\OPrf[T](x,\gn{!G_\Th{T}})]$. So $\Th{T}$ is
103+
$\lexists[x][\OPrf[\Th{T}](x,\gn{!G_\Th{T}})]$. So $\Th{T}$ is
104104
$\omega$-inconsistent.
105105
\end{proof}
106106

content/incompleteness/incompleteness-provability/lob-thm.tex

Lines changed: 36 additions & 36 deletions
Original file line numberDiff line numberDiff line change
@@ -11,21 +11,21 @@
1111
\olsection{L\"ob's Theorem}
1212

1313
The G\"odel sentence for a theory~$\Th{T}$ is a fixed point of $\lnot
14-
\OProv[T](y)$, i.e., !!a{sentence}~$!G$ such that
14+
\OProv[\Th{T}](y)$, i.e., !!a{sentence}~$!G$ such that
1515
\[
16-
\Th{T} \Proves \lnot \OProv[T](\gn{!G}) \liff !G.
16+
\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G}) \liff !G.
1717
\]
1818
It is not !!{derivable}, because if $\Th{T} \Proves !G$, (a) by !!{derivability}
19-
condition~(1), $\Th{T} \Proves \OProv[T](\gn{!G})$, and (b) $\Th{T}
20-
\Proves !G$ together with $\Th{T} \Proves \lnot \OProv[T](\gn{!G})
21-
\liff !G$ gives $\Th{T} \Proves \lnot \OProv[T](\gn{!G})$, and so
19+
condition~(1), $\Th{T} \Proves \OProv[\Th{T}](\gn{!G})$, and (b) $\Th{T}
20+
\Proves !G$ together with $\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G})
21+
\liff !G$ gives $\Th{T} \Proves \lnot \OProv[\Th{T}](\gn{!G})$, and so
2222
$\Th{T}$ would be inconsistent. Now it is natural to ask about the
23-
status of a fixed point of $\OProv[T](y)$, i.e., !!a{sentence}~$!H$
23+
status of a fixed point of $\OProv[\Th{T}](y)$, i.e., !!a{sentence}~$!H$
2424
such that
2525
\[
26-
\Th{T} \Proves \OProv[T](\gn{!H}) \liff !H.
26+
\Th{T} \Proves \OProv[\Th{T}](\gn{!H}) \liff !H.
2727
\]
28-
If it were !!{derivable}, $\Th{T} \Proves \OProv[T](\gn{!H})$ by
28+
If it were !!{derivable}, $\Th{T} \Proves \OProv[\Th{T}](\gn{!H})$ by
2929
condition~(1), but the same conclusion follows if we apply modus
3030
ponens to the equivalence above. Hence, we don't get that $\Th{T}$ is
3131
inconsistent, at least not by the same argument as in the case of the
@@ -34,8 +34,8 @@
3434

3535
We can make headway on this question if we generalize it a bit. The
3636
left-to-right direction of the fixed point equivalence,
37-
$\OProv[T](\gn{!H}) \lif !H$, is an instance of a general schema
38-
called a \emph{reflection principle}: $\OProv[T](\gn{!A}) \lif !A$.
37+
$\OProv[\Th{T}](\gn{!H}) \lif !H$, is an instance of a general schema
38+
called a \emph{reflection principle}: $\OProv[\Th{T}](\gn{!A}) \lif !A$.
3939
It is called that because it expresses, in a sense, that $\Th{T}$ can
4040
``reflect'' about what it can !!{derive}; basically it says, ``If $\Th{T}$
4141
can !!{derive}~$!A$, then~$!A$ is true,'' for any~$!A$. This is true for
@@ -47,13 +47,13 @@
4747

4848
\begin{thm}\ollabel{thm:lob}
4949
Let $\Th{T}$ be !!a{axiomatizable} theory extending $\Th{Q}$, and
50-
suppose $\OProv[T](y)$ is a formula satisfying conditions P1--P3 from
51-
\olref[2in]{sec}. If $\Th{T}$ !!{derive}s $\OProv[T](\gn{!A}) \lif !A$,
50+
suppose $\OProv[\Th{T}](y)$ is a formula satisfying conditions P1--P3 from
51+
\olref[2in]{sec}. If $\Th{T}$ !!{derive}s $\OProv[\Th{T}](\gn{!A}) \lif !A$,
5252
then in fact $\Th{T}$ !!{derive}s $!A$.
5353
\end{thm}
5454

5555
Put differently, if $\Th{T} \Proves/ !A$, then $\Th{T} \Proves/
56-
\OProv[T](\gn{!A}) \lif !A$. This result is known as L\"ob's
56+
\OProv[\Th{T}](\gn{!A}) \lif !A$. This result is known as L\"ob's
5757
theorem.
5858

5959
\begin{explain}
@@ -78,41 +78,41 @@
7878
A formalization of this idea, replacing ``is true'' with ``is
7979
!!{derivable},'' and ``Santa Claus exists'' with~$!A$, yields the proof of
8080
L\"ob's theorem. The trick is to apply the fixed-point lemma to the
81-
!!{formula}~$\OProv[T](y) \lif !A$. The fixed point of that
81+
!!{formula}~$\OProv[\Th{T}](y) \lif !A$. The fixed point of that
8282
corresponds to the sentence~$X$ in the preceding sketch.
8383
\end{explain}
8484

8585
\begin{proof}[Proof of \olref{thm:lob}]
8686
Suppose $!A$ is !!a{sentence} such that $\Th{T}$ !!{derive}s
87-
$\OProv[T](\gn{!A}) \lif !A$. Let $!B(y)$ be the !!{formula}~$\OProv[T](y)
87+
$\OProv[\Th{T}](\gn{!A}) \lif !A$. Let $!B(y)$ be the !!{formula}~$\OProv[\Th{T}](y)
8888
\lif !A$, and use the fixed-point lemma to find !!a{sentence}~$!D$
8989
such that $\Th{T}$ !!{derive}s $!D \liff !B(\gn{!D})$. Then each of the
9090
following is !!{derivable} in $\Th{T}$:
9191
\begin{align}
92-
& !D \liff (\OProv[T](\gn{!D}) \lif !A) \ollabel{L-1}\\
92+
& !D \liff (\OProv[\Th{T}](\gn{!D}) \lif !A) \ollabel{L-1}\\
9393
& \qquad \text{$!D$ is a fixed point of~$!B(y)$}\notag \\
94-
& !D \lif (\OProv[T](\gn{!D}) \lif !A) \ollabel{L-2}\\
94+
& !D \lif (\OProv[\Th{T}](\gn{!D}) \lif !A) \ollabel{L-2}\\
9595
& \qquad\text{from \olref{L-1}}\notag\\
96-
& \OProv[T](\gn{!D \lif (\OProv[T](\gn{!D}) \lif !A)}) \ollabel{L-3}\\
96+
& \OProv[\Th{T}](\gn{!D \lif (\OProv[\Th{T}](\gn{!D}) \lif !A)}) \ollabel{L-3}\\
9797
& \qquad \text{from \olref{L-2} by condition P1}\notag \\
98-
& \OProv[T](\gn{!D}) \lif \OProv[T](\gn{\OProv[T](\gn{!D}) \lif !A})
98+
& \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D}) \lif !A})
9999
\ollabel{L-4}\\
100100
&\qquad \text{from \olref{L-3} using condition P2}\notag \\
101-
& \OProv[T](\gn{!D}) \lif (\OProv[T](\gn{\OProv[T](\gn{!D})}) \lif \OProv[T](\gn{!A})) \ollabel{L-5}\\
101+
& \OProv[\Th{T}](\gn{!D}) \lif (\OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D})}) \lif \OProv[\Th{T}](\gn{!A})) \ollabel{L-5}\\
102102
&\qquad \text{from \olref{L-4} using P2 again} \notag\\
103-
& \OProv[T](\gn{!D}) \lif \OProv[T](\gn{\OProv[T](\gn{!D})}) \ollabel{L-6}\\
103+
& \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{\OProv[\Th{T}](\gn{!D})}) \ollabel{L-6}\\
104104
& \qquad\text{by !!{derivability} condition P3} \notag\\
105-
& \OProv[T](\gn{!D}) \lif \OProv[T](\gn{!A}) \ollabel{L-7} \\
105+
& \OProv[\Th{T}](\gn{!D}) \lif \OProv[\Th{T}](\gn{!A}) \ollabel{L-7} \\
106106
&\qquad\text{from \olref{L-5} and \olref{L-6}}\notag\\
107-
& \OProv[T](\gn{!A}) \lif !A \ollabel{L-8}\\
107+
& \OProv[\Th{T}](\gn{!A}) \lif !A \ollabel{L-8}\\
108108
&\qquad\text{by assumption of the theorem} \notag\\
109-
& \OProv[T](\gn{!D}) \lif !A \ollabel{L-9}\\
109+
& \OProv[\Th{T}](\gn{!D}) \lif !A \ollabel{L-9}\\
110110
&\qquad\text{from \olref{L-7} and \olref{L-8}}\notag\\
111-
& (\OProv[T](\gn{!D}) \lif !A) \lif !D \ollabel{L-10}\\
111+
& (\OProv[\Th{T}](\gn{!D}) \lif !A) \lif !D \ollabel{L-10}\\
112112
& \qquad \text{from \olref{L-1}}\notag \\
113113
& !D \ollabel{L-11}\\
114114
& \qquad\text{from \olref{L-9} and \olref{L-10}}\notag \\
115-
& \OProv[T](\gn{!D}) \ollabel{L-12}\\
115+
& \OProv[\Th{T}](\gn{!D}) \ollabel{L-12}\\
116116
& \qquad\text{from \olref{L-11} by condition~P1}\notag \\
117117
& !A \qquad\qquad\text{from \olref{L-8} and \olref{L-12}}\notag
118118
\end{align}
@@ -121,15 +121,15 @@
121121
With L\"ob's theorem in hand, there is a short proof of the second
122122
incompleteness theorem (for theories having !!a{derivability} predicate
123123
satisfying conditions P1--P3): if $\Th{T} \Proves
124-
\OProv[T](\gn{\lfalse}) \lif \lfalse$, then $\Th{T} \Proves \lfalse$.
124+
\OProv[\Th{T}](\gn{\lfalse}) \lif \lfalse$, then $\Th{T} \Proves \lfalse$.
125125
If $\Th{T}$ is consistent, $\Th{T} \Proves/ \lfalse$. So, $\Th{T}
126-
\Proves/ \OProv[T](\gn{\lfalse}) \lif \lfalse$, i.e., $\Th{T} \Proves/
126+
\Proves/ \OProv[\Th{T}](\gn{\lfalse}) \lif \lfalse$, i.e., $\Th{T} \Proves/
127127
\OCon[\Th{T}]$. We can also apply it to show that~$!H$, the fixed
128-
point of $\OProv[T](x)$, is !!{derivable}. For since
128+
point of $\OProv[\Th{T}](x)$, is !!{derivable}. For since
129129
\begin{align*}
130-
\Th{T} & \Proves \OProv[T](\gn{!H}) \liff !H\\
130+
\Th{T} & \Proves \OProv[\Th{T}](\gn{!H}) \liff !H\\
131131
\intertext{in particular}
132-
\Th{T} & \Proves \OProv[T](\gn{!H}) \lif !H
132+
\Th{T} & \Proves \OProv[\Th{T}](\gn{!H}) \lif !H
133133
\end{align*}
134134
and so by L\"ob's theorem, $\Th{T} \Proves !H$.
135135

@@ -139,13 +139,13 @@
139139

140140
\begin{prob}
141141
Let $\Th{T}$ be a computably axiomatized theory, and
142-
let $\OProv[T]$ be !!a{derivability} predicate for $\Th{T}$. Consider the
142+
let $\OProv[\Th{T}]$ be !!a{derivability} predicate for $\Th{T}$. Consider the
143143
following four statements:
144144
\begin{enumerate}
145-
\item If $T \Proves !A$, then $T \Proves \OProv[T](\gn{!A})$.
146-
\item $T \Proves !A \lif \OProv[T](\gn{!A})$.
147-
\item If $T \Proves \OProv[T](\gn{!A})$, then $T \Proves !A$.
148-
\item $T \Proves \OProv[T](\gn{!A}) \lif !A$
145+
\item If $T \Proves !A$, then $T \Proves \OProv[\Th{T}](\gn{!A})$.
146+
\item $T \Proves !A \lif \OProv[\Th{T}](\gn{!A})$.
147+
\item If $T \Proves \OProv[\Th{T}](\gn{!A})$, then $T \Proves !A$.
148+
\item $T \Proves \OProv[\Th{T}](\gn{!A}) \lif !A$
149149
\end{enumerate}
150150
Under what conditions are each of these statements true?
151151
\end{prob}

0 commit comments

Comments
 (0)