Skip to content

Commit 5d6fb8a

Browse files
committed
small fixes to Sigma-1 completeness
1 parent 02b83f3 commit 5d6fb8a

File tree

1 file changed

+70
-70
lines changed

1 file changed

+70
-70
lines changed

content/incompleteness/representability-in-q/sigma1-completeness.tex

Lines changed: 70 additions & 70 deletions
Original file line numberDiff line numberDiff line change
@@ -12,9 +12,9 @@
1212
Despite the incompleteness of $\Th{Q}$ and its consistent, axiomatizable
1313
extensions, we have seen that $\Th{Q}$ does prove many basic facts about
1414
numerals. In fact, this can be extended quite considerably. To understand
15-
the scope of what can be proved in $\Th{Q}$, we introduce the notions of
15+
the scope of what can be proved in~$\Th{Q}$, we introduce the notions of
1616
$\Delta_0$, $\Sigma_1$, and $\Pi_1$ !!{formula}s. Roughly speaking, a
17-
$\Sigma_1$ !!{formula} is one of the form $\lexists{x}!A(x)$, where $!A$
17+
$\Sigma_1$ !!{formula} is one of the form $\lexists[x][!B(x)]$, where $!B$
1818
is constructed using only propositional connectives and bounded
1919
quantifiers. We shall show that if $!A$ is a $\Sigma_1$ !!{sentence}
2020
which is true in $\Struct{N}$, then $\Th{Q} \Proves !A$
@@ -46,71 +46,71 @@
4646

4747
\begin{lem}
4848
\ollabel{lem:q-proves-clterm-id} Suppose $t$ is a closed term such that
49-
$\Assign{t}{N} = n$. Then $\Th{Q} \Proves \eq[t][\num n]$.
49+
$\Value{t}{N} = n$. Then $\Th{Q} \Proves \eq[t][\num n]$.
5050
\end{lem}
5151

5252
\begin{proof}
53-
We prove this by induction on the complexity of $t$. For the base case,
54-
${\Obj 0}^\Struct{N} = 0$, and $\Th{Q} \Proves \eq[\Obj 0][\num 0]$
53+
We prove this by induction on the complexity of~$t$. For the base case,
54+
$\Value{\Obj 0}{N} = 0$, and $\Th{Q} \Proves \eq[\Obj 0][\num 0]$
5555
since $\num 0 \ident \Obj 0$.
5656
%
5757
For the inductive case, let $t_1$ and $t_2$ be terms such that
58-
$t_1^\Struct{N} = n_1$, $t_2^\Struct{N} = n_2$,
58+
$\Value{t_1}{N} = n_1$, $\Value{t_2}{N} = n_2$,
5959
$\Th{Q} \Proves \eq[t_1][\num n_1]$, and
6060
$\Th{Q} \Proves \eq[t_2][\num n_2]$.
6161

62-
Then $(t_1')^\Struct{N} = n_1 + 1$, and we have that $\Th{Q} \Proves
62+
Then $\Value{(t_1')}{N} = n_1 + 1$, and we have that $\Th{Q} \Proves
6363
\eq[t_1'][{\num n_1}']$ by the first-order rules for identity applied
6464
to the induction hypothesis and the !!{formula}
6565
$\eq[\num{n_1}'][\num{n_1}']$,
6666
so we have $\Th{Q} \Proves \eq[t_1'][\num{n_1 + 1}]$
6767
by the definition of numerals.
6868

6969
For sums we have
70-
$$
71-
(t_1 + t_2)^\mathfrak{N}
72-
= t_1^\mathfrak{N} + t_2^\mathfrak{N}
70+
\[
71+
\Value{(t_1 + t_2)}{N}
72+
= \Value{t_1}{N} + \Value{t_2}{N}
7373
= n_1 + n_2.
74-
$$
74+
\]
7575
By the induction hypothesis and the rules for identity,
76-
$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + t_2]$, and then
77-
$\Th{Q} \Proves \eq[t_1 + t_2][\num n_1 + \num n_2]$
76+
$\Th{Q} \Proves \eq[t_1 + t_2][\num{n_1} + t_2]$, and then
77+
$\Th{Q} \Proves \eq[t_1 + t_2][\num{n_1} + \num{n_2}]$
7878
by a second application of the rules for identity.
7979
By \olref[inc][req][bre]{lem:q-proves-add},
80-
$\Th{Q} \Proves \eq[\num n_1 + \num n_2][\num{n_1 + n_2}]$,
80+
$\Th{Q} \Proves \eq[\num{n_1} + \num{n_2}][\num{n_1 + n_2}]$,
8181
so $\Th{Q} \Proves \eq[t_1 + t_2][\num{n_1 + n_2}]$.
8282

83-
Similar reasoning also works for $\times$, using
83+
Similar reasoning also works for~$\times$, using
8484
\olref[inc][req][bre]{lem:q-proves-mult}.
8585
%
8686
Since this exhausts the closed terms of arithmetic, we have that
87-
$\Th{Q} \Proves \eq[t][\num n]$ for all closed terms $t$ such that
88-
$t^\Struct{N} = n$.
87+
$\Th{Q} \Proves \eq[t][\num n]$ for all closed terms~$t$ such that
88+
$\Value{t}{N} = n$.
8989
\end{proof}
9090

9191
\begin{prob}
9292
Prove in detail the part of \olref{lem:q-proves-clterm-id}
93-
involving $\times$.
93+
involving~$\times$.
9494
\end{prob}
9595

9696
\begin{lem}
9797
\ollabel{lem:atomic-completeness}
9898
Suppose $t_1$ and $t_2$ are closed terms. Then
9999
\begin{enumerate}
100-
\item If $t_1^\Struct{N} = t_2^\Struct{N}$,
100+
\item If $\Value{t_1}{N} = \Value{t_2}{N}$,
101101
then $\Th{Q} \Proves \eq[t_1][t_2]$.
102-
\item If $t_1^\Struct{N} \neq t_2^\Struct{N}$,
102+
\item If $\Value{t_1}{N} \neq \Value{t_2}{N}$,
103103
then $\Th{Q} \Proves \eq/[t_1][t_2]$.
104-
\item If $t_1^\Struct{N} < t_2^\Struct{N}$,
104+
\item If $\Value{t_1}{N} < \Value{t_2}{N}$,
105105
then $\Th{Q} \Proves t_1 < t_2$.
106-
\item If $t_2^\Struct{N} \leq t_1^\Struct{N}$,
106+
\item If $\Value{t_2}{N} \leq \Value{t_1}{N}$,
107107
then $\Th{Q} \Proves \lnot(t_1 < t_2)$.
108108
\end{enumerate}
109109
\end{lem}
110110

111111
\begin{proof}
112-
Given terms $t_1$ and $t_2$, we fix $n = t_1^\mathfrak{N}$ and
113-
$m = t_2^\mathfrak{N}$.
112+
Given terms $t_1$ and $t_2$, we fix $n = \Value{t_1}{N}$ and
113+
$m = \Value{t_2}{N}$.
114114

115115
Suppose $!A \ident t_1 = t_2$. By \olref{lem:q-proves-clterm-id},
116116
$\Th{Q} \Proves \eq[t_1][\num n]$ and $\Th{Q} \Proves \eq[t_2][\num n]$.
@@ -120,8 +120,8 @@
120120
and by the transitivity of identity again,
121121
$\Th{Q} \Proves \eq/[t_1][t_2]$.
122122

123-
Now let $!A \ident t_1 < t_2$. For both cases, we rely on axiom $!Q_8$,
124-
which states that $x < y \leftrightarrow \lexists[z][\eq[z' + x][y]]$
123+
Now let $!A \ident t_1 < t_2$. For both cases, we rely on axiom~$!Q_8$,
124+
which states that $x < y \liff \lexists[z][\eq[z' + x][y]]$
125125
for all $x,y$.
126126

127127
Suppose $\Sat{N}{t_1 < t_2}$. Then there exists some $k \in \Nat$
@@ -132,61 +132,61 @@
132132
By the transitivity of identity it follows that
133133
$\Th{Q} \Proves \eq[{\num k}' + t_1][t_2]$,
134134
so $\Th{Q} \Proves \lexists[z][\eq[z' + t_1][t_2]]$.
135-
By the right-to-left direction of $!Q_8$, $\Th{Q} \Proves t_1 < t_2$.
135+
By the right-to-left direction of~$!Q_8$, $\Th{Q} \Proves t_1 < t_2$.
136136

137-
Suppose instead that $\Sat/{N}{t_1 < t_2}$, i.e.\ $m \leq n$.
137+
Suppose instead that $\Sat/{N}{t_1 < t_2}$, i.e., $m \leq n$.
138138
%
139-
We work in $\Th{Q}$ and assume that $t_1 < t_2$. By the left-to-right
140-
direction of $!Q_8$, there is some $z$ such that $\eq[z' + t_1][t_2]$.
139+
We work in~$\Th{Q}$ and assume that $t_1 < t_2$. By the left-to-right
140+
direction of~$!Q_8$, there is some~$z$ such that $\eq[z' + t_1][t_2]$.
141141
Since $\Th{Q} \Proves \eq[t_1][\num n]$ and
142142
$\Th{Q} \Proves \eq[t_2][\num m]$, $\eq[z' + \num n][\num m]$.
143143
%
144-
By an external induction on $m$ using $!Q_5$,
144+
By an external induction on~$m$ using~$!Q_5$,
145145
$\eq[z' + \num{n - m}][\Obj 0]$.
146-
If $m = n$ then $\eq/[z'][\Obj 0]$, giving a contradiction via $!Q_3$.
147-
If $m < n$ then $\eq[(z' + \num{n - m - 1})'][\Obj 0]$ by $!Q_5$ again,
148-
giving a contradiction via $!Q_3$.
146+
If $m = n$ then $\eq/[z'][\Obj 0]$, giving a contradiction via~$!Q_3$.
147+
If $m < n$ then $\eq[(z' + \num{n - m - 1})'][\Obj 0]$ by~$!Q_5$ again,
148+
giving a contradiction via~$!Q_3$.
149149
So $\Th{Q} \Proves \lnot(t_1 < t_2)$.
150150
\end{proof}
151151

152152
\begin{lem}
153153
\ollabel{lem:bounded-quant-equiv}
154-
Suppose $!A$ is a !!{formula}. Then
154+
Suppose $!A$ is !!a{formula}, $t$ a closed term, and $k=\Value{t}{N}$. Then
155155
\begin{enumerate}
156156
\item $\Th{Q} \Proves \bforall{x<t}{!A(x)}$ iff $\Th{Q} \Proves
157-
!A(\num 0) \land \dotsc \land !A(\num{t^\Struct{N}-1})$.
157+
!A(\num 0) \land \dots \land !A(\num{k-1})$.
158158
\item $\Th{Q} \Proves \bexists{x<t}{!A(x)}$ iff $\Th{Q} \Proves
159-
!A(\num 0) \lor \dotsc \lor !A(\num{t^\Struct{N}-1})$.
159+
!A(\num 0) \lor \dots \lor !A(\num{k-1})$.
160160
\end{enumerate}
161161
\end{lem}
162162

163163
\begin{proof}
164164
We prove the case for the bounded universal quantifier.
165-
If $t^\Struct{N} = 0$ then the left-hand side of the
166-
equivalence is provable in $\Th{Q}$, because there is no
165+
If $\Value{t}{N} = 0$ then the left-hand side of the
166+
equivalence is provable in~$\Th{Q}$, because there is no
167167
$x<\num 0$ by \olref[inc][req][min]{lem:less-zero}.
168168
Similarly, we can take an empty disjunction to be simply
169-
$\ltrue$, which is also provable in $\Th{Q}$.
169+
$\ltrue$, which is also provable in~$\Th{Q}$.
170170
%
171-
We therefore suppose that $t^\Struct{N} = k+1$ for some
172-
natural number $k$. By \olref{lem:q-proves-clterm-id} we
173-
can assume that we are working with a !!{formula} of the
171+
We therefore suppose that $\Value{t}{N} = k+1$ for some
172+
natural number~$k$. By \olref{lem:q-proves-clterm-id} we
173+
can assume that we are working with !!a{formula} of the
174174
form $\bforall{x<\num{k+1}}{!A(x)}$.
175175

176176
Suppose that $\Th{Q} \Proves \bforall{x<\num{k+1}}{!A(x)}$,
177177
and let $n \leq k$. Since $\Th{Q} \Proves \num n < \num{k+1}$
178178
by \olref{lem:atomic-completeness}, it follows by logic that
179179
$\Th{Q} \Proves !A(\num n)$. Applying this fact $k+1$ times
180180
for each $n \leq k$, we get that $\Th{Q} \Proves !A(\num 0)
181-
\land \dotsc \land !A(\num k)$ as desired.
181+
\land \dots \land !A(\num k)$ as desired.
182182

183183
For the other direction, suppose that $\Th{Q} \Proves
184-
!A(\num 0) \land \dotsc \land !A(\num k)$. Working in
184+
!A(\num 0) \land \dots \land !A(\num k)$. Working in
185185
$\Th{Q}$, suppose that $x < \num{k+1}$.
186186
By \olref[inc][req][min]{lem:less-nsucc} we have that
187-
$x = \num 0 \lor \dotsc \lor x = \num k$, so by logic it
188-
follows that $!A(x)$, and hence the universal claim
189-
$\bforall{x<\num{k+1}}!A(x)$ follows.
187+
$x = \num 0 \lor \dots \lor x = \num k$, so by logic it
188+
follows that~$!A(x)$, and hence the universal claim
189+
$\bforall{x<\num{k+1}}{!A(x)}$ follows.
190190

191191
The proof of the equivalence for bounded existentially
192192
quantified !!{formula}s is similar.
@@ -214,7 +214,7 @@
214214

215215
\begin{enumerate}
216216
\item Suppose $(!A \land !B)$ is true in $\Struct{N}$,
217-
so $!A$ and $!B$ are true in $\Struct{N}$.
217+
so $!A$ and $!B$ are true in~$\Struct{N}$.
218218
By the induction hypothesis, $\Th{Q} \Proves !A$ and
219219
$\Th{Q} \Proves !B$,
220220
so $\Th{Q} \Proves (!A \land !B)$ by logic.
@@ -237,28 +237,28 @@
237237
by the induction hypothesis. Consequently,
238238
$\Th{Q} \Proves \lnot(!A \lor !B)$ by logic.
239239
%
240-
\item Suppose that $\bforall{x<t}!A(x)$ is true in
241-
$\Struct{N}$, where $t$ is a closed term. By the induction
242-
hypothesis and logic, if $!A(\num n)$ is true in $\Struct{N}$
243-
for all $n < t^\Struct{N}$ then $\Th{Q} \Proves
244-
!A(\num 0) \land \dots \land !A(\num{t^\Struct{N}-1})$.
240+
\item Suppose that $\bforall{x<t}{!A(x)}$ is true
241+
in~$\Struct{N}$, where $t$ is a closed term and $k=\Value{t}{N}$. By the induction
242+
hypothesis and logic, if $!A(\num n)$ is true in~$\Struct{N}$
243+
for all $n < \Value{t}{N}$ then $\Th{Q} \Proves
244+
!A(\num 0) \land \dots \land !A(\num{k-1})$.
245245
By \olref{lem:bounded-quant-equiv} it follows that
246-
$\Th{Q} \Proves \bforall{x<t}!A(x)$.
246+
$\Th{Q} \Proves \bforall{x<t}{!A(x)}$.
247247
%
248248
\item The case for the bounded existential quantifier, where
249-
we have a !!{sentence} of the form $\bexists{x < t}!A(x)$,
249+
we have !!a{sentence} of the form $\bexists{x < t}{!A(x)}$,
250250
is similar to that for the bounded universal quantifier.
251251
%
252-
\item Suppose that $\lnot \bforall{x<t}!A(x)$ is true in
253-
$\Struct{N}$, where $t$ is a closed term. This !!{sentence}
254-
is equivalent to the !!{sentence} $\bexists{x<t}\lnot!A(x)$,
255-
with the equivalence derivable in $\Th{Q}$, so we may apply
252+
\item Suppose that $\lnot \bforall{x<t}{!A(x)}$ is true
253+
in~$\Struct{N}$, where $t$ is a closed term. This !!{sentence}
254+
is equivalent to the !!{sentence} $\bexists{x<t}{\lnot !A(x)}$,
255+
with the equivalence derivable in~$\Th{Q}$, so we may apply
256256
the reasoning for bounded existential quantifiers.
257257
%
258258
\item Similarly, suppose that $\lnot \bexists{x<t}!A(x)$ is
259259
true in $\Struct{N}$, where $t$ is a closed term. This
260260
!!{sentence} is equivalent in $\Th{Q}$ to
261-
$\bforall{x<t}\lnot!A(x)$, and so we may apply the reasoning
261+
$\bforall{x<t}{\lnot!A(x)}$, and so we may apply the reasoning
262262
for bounded universal quantifiers.
263263
%
264264
\item Finally, suppose $\lnot !A$ is true in $\Struct{N}$.
@@ -267,8 +267,8 @@
267267
!!{sentence} $!B$. If $!A$ is atomic then by
268268
\olref{lem:atomic-completeness}, $\Th{Q} \Proves \lnot !A$.
269269
If $\lnot !A \ident \lnot\lnot !B$, then by logic it is
270-
provably equivalent in $\Th{Q}$ to $!B$, which is true in
271-
$\Struct{N}$ since $\lnot !A$ is true in $\Struct{N}$.
270+
provably equivalent in~$\Th{Q}$ to~$!B$, which is true
271+
in~$\Struct{N}$ since $\lnot !A$ is true in~$\Struct{N}$.
272272
By the induction hypothesis we therefore have that
273273
$\Th{Q} \Proves \lnot !A$.
274274
\end{enumerate}
@@ -281,20 +281,20 @@
281281

282282
\begin{thm}
283283
\ollabel{thm:sigma1-completeness}
284-
If $!A$ is a $\Sigma_1$ !!{sentence} which is true in
285-
$\Struct{N}$, then $\Th{Q} \Proves !A$.
284+
If $!A$ is a $\Sigma_1$ !!{sentence} which is true
285+
in~$\Struct{N}$, then $\Th{Q} \Proves !A$.
286286
\end{thm}
287287

288288
\begin{proof}
289289
If $\lexists{x}!A(x)$ is a $\Sigma_1$ !!{sentence} which
290-
is true in $\Struct{N}$, then there exists a natural number
291-
$n$ and a variable assignment $s$ such that $s(x) = n$ and
292-
$\Struct{N},s \Entails !A(x)$. By standard facts about
290+
is true in~$\Struct{N}$, then there exists a natural
291+
number~$n$ and a variable assignment~$s$ such that $s(x) = n$ and
292+
$\Sat{N}{!A(x)}[s]$. By standard facts about
293293
the satisfaction relation it follows that
294-
$\Struct{N} \Entails !A(\num n)$. But $!A(\num n)$ is a
294+
$\Sat{N}{!A(\num n)}$. But $!A(\num n)$ is a
295295
$\Delta_0$ !!{formula}, so by \olref{lem:delta0-completeness}
296296
we have that $\Th{Q} \Proves !A(\num n)$, and hence by
297-
logic we also have that $\Th{Q} \Proves \exists{x}!A(x)$.
297+
logic we also have that $\Th{Q} \Proves \lexists[x][!A(x)]$.
298298
\end{proof}
299299

300300
\end{document}

0 commit comments

Comments
 (0)