-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_pretrain.py
245 lines (208 loc) · 10 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
import util.dist_utils as dist_utils
from engine_pretrain import train_one_epoch,validate_ek100_mir_zeroshot,build_transform
from util.config import get_config
from dataset.egodataset import EgoExoDataset
from dataset.ek100dataset import EK100Dataset
from model.clip import *
import torch
import torch.cuda.amp as amp
from model import loss
def get_args_parser():
parser = argparse.ArgumentParser('HOD pre-training', add_help=False)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
parser.add_argument('--config_file', default='configs/no_decoder/debug_clip_base.yml', type=str,
help='config file')
# Dataset parameters
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
parser.add_argument('--world_size', default=1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=0, type=int,
help='node rank for distributed training')
parser.add_argument("--local_rank", type=int, default=0)
parser.set_defaults(pin_mem=True)
return parser
def main(args):
dist_utils.init_distributed_mode(args)
config = get_config(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
dist_utils.random_seed(args.seed, dist_utils.get_rank())
transform_train = build_transform(config.model.name,mode='train')
transform_val = build_transform(config.model.name,mode='val')
crop_size = 336 if "_336PX" in config.model.name else 224
tokenizer = None
train_dataset = EgoExoDataset(
config.data, transform=transform_train, is_training=True, tokenizer=tokenizer, crop_size=crop_size
)
val_dataset = EK100Dataset(config.test.ek100_mir, transform=transform_val, is_training=False, tokenizer=None, crop_size=crop_size)
if dist_utils.get_rank() == 0 and args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
data_loader_train = torch.utils.data.DataLoader(
train_dataset, batch_size=config.train.batch_size, shuffle=(train_sampler is None),
# collate_fn=collect if config.data.dataset == 'htego_feat' else None,
collate_fn = None,
num_workers=config.train.workers, pin_memory=False, sampler=train_sampler, drop_last=True,
)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False)
val_loader = torch.utils.data.DataLoader(
val_dataset, batch_size=config.test.batch_size, shuffle=False,
num_workers=config.train.workers, pin_memory=False, sampler=val_sampler, drop_last=False
)
model_name = config.model.name
if model_name == 'CLIP_VITB16':
model = CLIP_VITB16(
config=config.model,
freeze_temperature=config.model.freeze_temperature,
use_grad_checkpointing=config.model.grad_checkpointing,
context_length=config.data.context_length,
vocab_size=config.data.vocab_size,
patch_dropout=config.model.patch_dropout,
num_frames=config.data.clip_length,
drop_path_rate=config.model.drop_path_rate,
use_fast_conv1=config.model.use_fast_conv1,
use_flash_attn=config.model.use_flash_attn,
use_quick_gelu=True,
project_embed_dim=config.model.project_embed_dim,
pretrain_zoo=config.model.pretrain_zoo,
pretrain_path=config.model.pretrain_path,
)
elif model_name == 'CLIP_VITL14_336PX':
model = CLIP_VITL14_336PX(
config=config.model,
freeze_temperature=config.model.freeze_temperature,
use_grad_checkpointing=config.model.grad_checkpointing,
context_length=config.data.context_length,
vocab_size=config.data.vocab_size,
patch_dropout=config.model.patch_dropout,
num_frames=config.data.clip_length,
drop_path_rate=config.model.drop_path_rate,
use_fast_conv1=config.model.use_fast_conv1,
use_flash_attn=config.model.use_flash_attn,
use_quick_gelu=True,
project_embed_dim=config.model.project_embed_dim,
pretrain_zoo=config.model.pretrain_zoo,
pretrain_path=config.model.pretrain_path,
)
elif model_name == 'CLIP_VITL14_336PX_Slowfast':
model = CLIP_VITL14_336PX_Slowfast(
config=config.model,
freeze_temperature=config.model.freeze_temperature,
use_grad_checkpointing=config.model.grad_checkpointing,
context_length=config.data.context_length,
vocab_size=config.data.vocab_size,
patch_dropout=config.model.patch_dropout,
num_frames=config.data.clip_length,
drop_path_rate=config.model.drop_path_rate,
use_fast_conv1=config.model.use_fast_conv1,
use_flash_attn=config.model.use_flash_attn,
use_quick_gelu=True,
project_embed_dim=config.model.project_embed_dim,
pretrain_zoo=config.model.pretrain_zoo,
pretrain_path=config.model.pretrain_path,
)
elif model_name == 'CLIP_VITB16_Slowfast':
model = CLIP_VITB16_Slowfast(
config=config.model,
freeze_temperature=config.model.freeze_temperature,
use_grad_checkpointing=config.model.grad_checkpointing,
context_length=config.data.context_length,
vocab_size=config.data.vocab_size,
patch_dropout=config.model.patch_dropout,
num_frames=config.data.clip_length,
drop_path_rate=config.model.drop_path_rate,
use_fast_conv1=config.model.use_fast_conv1,
use_flash_attn=config.model.use_flash_attn,
use_quick_gelu=True,
project_embed_dim=config.model.project_embed_dim,
pretrain_zoo=config.model.pretrain_zoo,
pretrain_path=config.model.pretrain_path,
)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, config.train.optimizer.wd)
optimizer = torch.optim.AdamW(param_groups, lr=config.train.lr, betas=(0.9, 0.999))
print(optimizer)
scaler = amp.GradScaler(enabled=not config.train.disable_amp)
print(f"Start training for {config.train.epochs} epochs")
start_time = time.time()
start_epoch = 0
criterion = loss.ClipLoss(
local_loss=config.train.local_loss,
gather_with_grad=config.train.gather_with_grad,
cache_labels=True,
rank=args.rank,
world_size=args.world_size,
).cuda(args.gpu)
if config.resume:
print("=> loading resume checkpoint '{}'".format(config.resume))
curr_checkpoint = torch.load(config.resume, map_location='cpu')
result = model.load_state_dict(curr_checkpoint['state_dict'])
for epoch in range(start_epoch, config.train.epochs):
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, scaler,
log_writer=log_writer,
args=args,criterion=criterion
)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch,}
val_stats = validate_ek100_mir_zeroshot(val_loader, model=model, criterion=criterion, args=args, config=config,split=epoch)
dist_utils.save_on_master({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'val_state':val_stats,
}, config.output_dir)
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
main(args)