pip install -r requirements_vis.txt
# Requires Open3D library to process the ScanNet dataset (e.g. open3d==0.9.0)
You can download processed ScanNet(~7G) from our Huggingface repository or prepare it by yourself.
- Download the ScanNet dataset from the official ScanNet website.
ln -s ScanNet_dataset ./data/rawscannet
- Get ScanNet official repo for pre-processing.
mkdir third_party
cd third_party
git clone https://github.com/ScanNet/ScanNet.git
cd ScanNet/Segmentator
git checkout 3e5726500896748521a6ceb81271b0f5b2c0e7d2
make
- Pre-process the scannet dataset as Mask3D.
python -m datasets.preprocessing.scannet_preprocessing preprocess \
--data_dir="./data/rawscannet" \
--save_dir="data/processed/scannet200" \
--git_repo="third_party/ScanNet" \
--scannet200=true
After preprocessing, please download the grounded scene caption data and put it into the data folder as:
|--
| |-- data
| |-- rawscannet
| |-- processed
| |-- scannet200
| |-- langdata
| |-- groundedscenecaption_format.json
- Run the visualization script to generate colorful point clouds.
cd data_visualization
python visualize_grounded_text.py --datapath ../data/processed/scannet200 --langpath ../data/langdata/groundedscenecaption_format.json --count 10 --scene_id scene0000_00
This command accepts raw point cloud data and language annotations, displaying 10 captions in the scene scene0000_00
.
- Visualize the grounded scene caption and the respective scene point clouds in the http server.
cd visualizer
python -m http.server 7890
Please follow the README instructions in the data_gen/ folder to obtain embodied dialogue and planning data with grounding annotation.