-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathreal_ft_data.py
310 lines (279 loc) · 10.8 KB
/
real_ft_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import numpy as np
import pandas as pd
import json
import os
from pdb import set_trace
from tqdm import tqdm
import glob
from PIL import Image as PILImage
import h5py
from copy import deepcopy
from scipy.spatial.transform import Rotation as R
import random
import imageio
import cv2
import shutil
def exists_or_mkdir(
path
):
if not os.path.exists(path):
os.makedirs(path)
else:
pass
def _6d_to_pose(
pose6d,
degrees=False
):
pose = np.eye(4)
pose[:3, 3] = pose6d[:3]
pose[:3, :3] = R.from_euler("xyz", pose6d[3:6], degrees=degrees).as_matrix()
return pose
def pose_to_6d(
pose,
degrees=False
):
pose6d = np.zeros(6)
pose6d[:3] = pose[:3, 3]
pose6d[3:6] = R.from_matrix(pose[:3, :3]).as_euler("xyz", degrees=degrees)
return pose6d
def compute_delta_action(
data_list,
):
delta_cur_2_last_action_list = []
for step_id, step_data in enumerate(data_list):
delta_cur_2_last_action = np.zeros(7)
delta_cur_2_last_action[-1] = step_data["action_gripper_pose"][-1]
if step_id == 0: # the first timestep
last2world = _6d_to_pose(step_data["gripper_pose"])
else:
last2world = _6d_to_pose(data_list[step_id-1]["action_gripper_pose"][:6], degrees=False)
cur2world = _6d_to_pose(step_data["action_gripper_pose"][:6], degrees=False)
cur2last = np.linalg.inv(last2world) @ cur2world
delta_cur_2_last_action[:6] = pose_to_6d(cur2last)
delta_cur_2_last_action_list.append(delta_cur_2_last_action)
def filter_real_data(
exp_id,
root_path,
save_data_path,
save_gif_path
):
root_path = os.path.join(root_path, exp_id)
save_data_path = os.path.join(save_data_path, exp_id)
save_gif_path = os.path.join(save_gif_path, exp_id)
length = len(glob.glob(os.path.join(root_path, exp_id, "*")))
exists_or_mkdir(save_gif_path)
exists_or_mkdir(save_data_path)
for j in range(0, length): # Here we only have 100 demos, change it accordingly.
episode_idx = str(j).zfill(6)
npz_path_list = glob.glob(os.path.join(root_path, episode_idx, "steps", "*", "other.npz"))
npz_path_list.sort()
step_id_list = []
img_list = []
for idx, npz_path in enumerate(npz_path_list):
this_npz = np.load(npz_path)
if idx == 0:
prev_gripper_action = this_npz["action_gripper_pose"][-1]
curr_gripper_action = this_npz["action_gripper_pose"][-1]
step_id = npz_path.split('/')[-2]
action = this_npz["delta_cur_2_last_action"]
if (abs(action[0]) >= 5e-4) or (abs(action[1]) >= 5e-4) or (abs(action[2]) >= 5e-4) or (curr_gripper_action != prev_gripper_action):
step_id_list.append(step_id)
prev_gripper_action = curr_gripper_action
save_last_step_id = step_id_list[-1]
last_step_id = step_id
add_step_id_list = [str(k).zfill(4) for k in range(int(save_last_step_id)+1, int(last_step_id)+1)]
step_id_list += add_step_id_list
for new_step_id, old_step_id in tqdm(enumerate(step_id_list)):
new_step_id = str(new_step_id).zfill(4)
new_step_path = os.path.join(save_data_path, episode_idx, "steps", new_step_id)
old_step_path = os.path.join(root_path, episode_idx, "steps", old_step_id)
shutil.copytree(old_step_path, new_step_path)
img_list.append(PILImage.open(os.path.join(new_step_path, f"image_primary.jpg")))
imageio.mimsave(os.path.join(save_gif_path, f"{episode_idx}.mp4"), img_list, fps=15)
def make_aug_short_real_dataset_info(
root_path,
root_info_path,
dataset_name,
select_ratio=1.0,
sequence_length=7,
action_pred_steps=3,
replicate_steps=10
):
save_json_path = os.path.join(root_info_path, f"{dataset_name}.json")
data_list = []
window_size = sequence_length + action_pred_steps
exp_path_list = glob.glob(os.path.join(root_path, "*"))
exp_path_list.sort()
for exp_path in tqdm(exp_path_list):
length = len(glob.glob(os.path.join(exp_path, "*")))
for j in tqdm(range(length)):
exp_id = exp_path.split('/')[-1]
demo_id = str(j).zfill(6)
npz_path_list = glob.glob(os.path.join(exp_path, demo_id, "steps", "*", "other.npz"))
npz_path_list.sort()
this_demo_list = [f"{exp_id}/{demo_id}"]
for npz_path in npz_path_list:
this_npz = np.load(npz_path)
step_id = npz_path.split('/')[-2]
int_step_id = int(step_id)
if int_step_id >= window_size:
this_demo_list.append([int_step_id - window_size, int_step_id])
curr_gripper_action = this_npz["delta_cur_2_last_action"][-1]
if step_id == "0000":
prev_gripper_action = curr_gripper_action
if curr_gripper_action != prev_gripper_action:
print(
"curr_gripper_action :", curr_gripper_action,
"prev_gripper_action :", prev_gripper_action,
"step_id :", step_id
)
for _ in range(replicate_steps):
for k in range(action_pred_steps):
if int_step_id + k < len(npz_path_list):
this_demo_list.append([int_step_id - window_size + k, int_step_id + k])
prev_gripper_action = curr_gripper_action
demo_length = len(this_demo_list)
this_demo_list.insert(1, demo_length-1+window_size)
data_list.append(this_demo_list)
if select_ratio < 1.0:
interval_len = 10
start_id = 0
select_num = int(interval_len * select_ratio)
end_id = interval_len
new_data_list = []
while end_id <= len(data_list):
selected_data_list = random.sample(data_list[start_id:end_id], select_num)
new_data_list += selected_data_list
start_id += interval_len
end_id += interval_len
data_list = new_data_list
json_string = json.dumps(data_list, indent=1)
with open(save_json_path, 'w') as json_file:
json_file.write(json_string)
def oxe_dataset_info():
dataset_names = [
# {
# "dataset_name": f"bridge_dataset",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name": f"cmu_stretch",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
{
"dataset_name": f"fractal20220817_data",
"wrist_image": "Normal",
"s_ratio": 0.54087122203,
}, # zheng ###
# {
# "dataset_name": f"dlr_edan_shared_control_converted_externally_to_rlds",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name": f"kuka",
# "wrist_image": "Normal",
# "s_ratio": 0.8341046294,
# }, # zheng ###
# {
# "dataset_name": f"roboturk",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name": f"ucsd_kitchen_dataset_converted_externally_to_rlds",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name" : f"berkeley_autolab_ur5",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan,
# {
# "dataset_name" : f"berkeley_fanuc_manipulation",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan
# {
# "dataset_name" : f"jaco_play",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan
# {
# "dataset_name" : f"iamlab_cmu_pickup_insert_converted_externally_to_rlds",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name" : f"viola",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 2.0,
# }, # fan
# {
# "dataset_name" : f"stanford_hydra_dataset_converted_externally_to_rlds",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 2.0,
# }, # fan
# {
# "dataset_name" : f"austin_buds_dataset_converted_externally_to_rlds",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan
# {
# "dataset_name" : f"utaustin_mutex",
# "wrist_image": "Normal",
# "s_ratio": 1.0,
# }, # zheng
# {
# "dataset_name" : f"taco_play",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 2.0,
# }, # fan
# {
# "dataset_name" : f"austin_sailor_dataset_converted_externally_to_rlds",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan
# {
# "dataset_name" : f"austin_sirius_dataset_converted_externally_to_rlds",
# "wrist_image": "Flip vertically & horizontally",
# "s_ratio": 1.0,
# }, # fan
# {
# "dataset_name" : f"furniture_bench_dataset_converted_externally_to_rlds",
# "wrist_image": "Normal",
# "s_ratio": 0.1,
# }, # zheng
]
# total_data_list = []
for info in tqdm(dataset_names):
dataset_name = info["dataset_name"]
wrist_image_info = info["wrist_image"]
s_ratio = info["s_ratio"]
root_path = f"/xxx/preprocess/oxe/{dataset_name}"
save_json_path = f"/xxx/data_info/{dataset_name}.json"
root_path_list = glob.glob(os.path.join(root_path, "*", "*"))
root_path_list.sort()
data_list = []
data_list.append(info)
accumulated_num_steps = 0
for this_path in tqdm(root_path_list):
exp_id = this_path.split('/')[-2]
demo_id = this_path.split('/')[-1]
num_step = len(glob.glob(os.path.join(this_path, "steps", "*")))
if s_ratio >= 1.0:
for _ in range(int(s_ratio)):
accumulated_num_steps += num_step
data_list.append([exp_id+'/'+demo_id, num_step])
else:
this_p = np.random.random()
if this_p < s_ratio:
accumulated_num_steps += num_step
data_list.append([exp_id+'/'+demo_id, num_step])
data_list[0]["accumulated_num_steps"] = accumulated_num_steps
json_string = json.dumps(data_list, indent=1)
with open(save_json_path, 'w') as json_file:
json_file.write(json_string)