forked from akshitagupta15june/lane_detection_opencv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanedetect_video_opencv.py
53 lines (39 loc) · 1.44 KB
/
lanedetect_video_opencv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import matplotlib.pylab as plt
import cv2 as cv
import numpy as np
def draw_the_line(img, lines):
img = np.copy(img)
blank_image = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
for line in lines:
for x1, y1, x2, y2 in line:
cv.line(blank_image, (x1, y1), (x2, y2), (255, 255, 0), thickness=2)
img = cv.addWeighted(img, 0.8, blank_image, 1, 0.0)
return img
def region_of_interst(img,vertices):
mask=np.zeros_like(img)
#channel_count=img.shape[2]
match_mask_color=255
cv.fillPoly(mask,vertices,match_mask_color)
mask_image=cv.bitwise_and(img,mask)
return mask_image
def process(image):
print(image.shape)
height = image.shape[0]
width = image.shape[1]
region_of_interst_vertices = [(0, height), (width / 2, height / 2), (width, height)]
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
canny = cv.Canny(gray, 250, 300)
cropped = region_of_interst(canny, np.array([region_of_interst_vertices], np.int32))
line1 = cv.HoughLinesP(cropped, rho=10, theta=np.pi / 60, threshold=100, lines=np.array([]), minLineLength=5,
maxLineGap=5)
image_width_line = draw_the_line(image, line1)
return image_width_line
cap=cv.VideoCapture('drive.mp4')
while(cap.isOpened()):
ret,frame=cap.read()
frame=process(frame)
cv.imshow('detection',frame)
if cv.waitKey(1) &0xFF==ord('q'):
break
cap.release()
cv.destroyAllWindows()