-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSimplex.pm
237 lines (193 loc) · 7.46 KB
/
Simplex.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
package PDL::Opt::Simplex;
use strict;
use warnings;
use PDL;
use PDL::Exporter;
our @ISA = qw/PDL::Exporter/;
our @EXPORT_OK = qw/simplex make_simplex/;
our %EXPORT_TAGS = ( Func => [@EXPORT_OK] );
our $VERSION = '2.097';
*simplex = \&PDL::simplex;
sub make_simplex {
my ($init, $initsize) = @_;
my ( $nd, $nd2, @otherdims ) = ( $init->dims, 1 );
pop @otherdims if @otherdims; # drop the spurious "1"
return unless $nd2 == $nd + 1 or $nd2 == 1;
return $init if $nd2 == $nd + 1;
my $simp = PDL->zeroes( $nd, $nd + 1, @otherdims );
# Constructing a tetrahedron:
# At step n (starting from zero)
# take vertices 0..n and move them 1/(n+1) to negative dir on axis n.
# Take vertex n+1 and move it n/(n+1) to positive dir on axis n
my $uppertri = $simp->copy;
ones($nd * ($nd+1) / 2)->tritosquare($uppertri->slice(",:-2")->t);
my $iseq = sequence($nd);
my $pjseq = $iseq / ( $iseq + 1 );
$simp .= $init - $initsize * $pjseq * $uppertri;
$simp->slice(",1:")->diagonal(0,1) += $initsize * (1-$pjseq);
$simp;
}
sub PDL::simplex {
my ( $init, $initsize, $minsize, $maxiter, $sub, $logsub, $t ) = @_;
my $simp = make_simplex($init, $initsize) // return;
my $nd = $simp->dim(0);
my $vals = $sub->($simp);
my $ssize;
while ($maxiter--) {
$ssize = ( $simp - $simp->slice(":,0") )->magnover->maxover;
$logsub->( $simp, $vals, $ssize ) if $logsub;
last unless $ssize > $minsize;
my $valsn = !$t ? $vals : $vals - $t * log( $vals->random + 0.00001 );
my $minind = $valsn->minimum_ind;
my $maxind = $valsn->maxover_n_ind(2);
my $maxind0 = $maxind->at(0);
my @worstvals = $valsn->index($maxind)->list;
my $bestval = $valsn->at($minind);
my $ssum = ($simp->t->sumover - (my $worst = $simp->slice(":,($maxind0)"))) / $nd;
my $new = 2 * $ssum - $worst;
my $val = $sub->($new)->at(0);
$val += $t * log( rand() + 0.00001 ) if $t;
my $removetop = 0;
if ( $val < $bestval ) {
my $newnew = $new + $ssum - $worst;
my $val2 = $sub->($newnew);
if ( $val2->at(0) < $val ) { # CASE1 Reflection and Expansion
$new = $newnew;
$val = $val2;
} # else CASE2 Reflection
$removetop = 1;
} elsif ( $val < $worstvals[1] ) { # CASE3 Reflection
$removetop = 1;
} else {
my $newnew = 0.5 * ($ssum + $worst);
my $val2 = $sub->($newnew);
if ( $val2->at(0) < $worstvals[0] ) { # CASE4 Contraction
$new = $newnew;
$val = $val2;
$removetop = 1;
}
}
if ($removetop) {
$worst .= $new;
$vals->slice( "($maxind0)" ) .= $val;
} else { # CASE5 Multiple Contraction
$simp .= 0.5 * ($simp->slice(":,$minind") + $simp);
my $idx = which( sequence($nd+1) != $minind );
$vals->index($idx) .= $sub->($simp->dice_axis(1,$idx));
}
}
my $mmind = $vals->minimum_ind;
return ( $simp->slice(":,$mmind"), $ssize, $vals->index($mmind) );
}
1;
__END__
=head1 NAME
PDL::Opt::Simplex -- Simplex optimization routines
=head1 SYNOPSIS
use PDL::Opt::Simplex;
($optimum,$ssize,$optval) = simplex($init,$initsize,$minsize,
$maxiter,
sub {evaluate_func_at($_[0])},
sub {display_simplex($_[0])}
);
# more involved:
use PDL;
use PDL::Opt::Simplex;
my $count = 0;
# find value of $x that returns a minimum
sub f {
my ($vec) = @_;
$count++;
my $x = $vec->slice('(0)');
# The parabola (x+3)^2 - 5 has a minimum at x=-3:
return (($x+3)**2 - 5);
}
sub log {
my ($vec, $vals, $ssize) = @_;
# $vec is the array of values being optimized
# $vals is f($vec)
# $ssize is the simplex size, or roughly, how close to being converged.
my $x = $vec->slice('(0)');
# each vector element passed to log() has a min and max value.
# ie: x=[6 0] -> vals=[76 4]
# so, from above: f(6) == 76 and f(0) == 4
print "$count [$ssize]: $x -> $vals\n";
}
my ($optimum, $ssize, $optval) = simplex(pdl(30), 3, 1e-6, 100, \&f, \&log);
print "ssize=$ssize opt=$optimum -> minimum=$optval\n";
=head1 DESCRIPTION
This package implements the commonly used simplex optimization
algorithm. The basic idea of the algorithm is to move
a "simplex" of N+1 points in the N-dimensional search space
according to certain rules. The main
benefit of the algorithm is that you do not need to calculate
the derivatives of your function.
C<$init> is a 1D vector holding the initial values of the N fitted
parameters, C<$optimum> is a vector holding the final values.
C<$optval> is the evaluation of the final values.
C<$initsize> is the size of C<$init>. It is only used if your supplied
C<$init> is a single point in your search space, to construct the simplex
("cloud") of N+1 points the algorithm uses, being the distance away from
your single C<$init> point along each dimension. This is done by the
exportable function C<make_simplex($init, $initsize)>, e.g.:
pdl> use PDL::Opt::Simplex
pdl> p $t = make_simplex(pdl(0,0,0), pdl(0.12,0.12,0.12))
[
[ 0 -0.06 -0.08]
[ 0.12 -0.06 -0.08]
[ 0 0.06 -0.08]
[ 0 0 0.04]
]
pdl> use PDL::Graphics::TriD
pdl> spheres3d $t # spheres not points so can easily see
C<$minsize> is the convergence criterion, e.g. C<$minsize> = 1e-6;
the algorithm will terminate when all the values of C<$ssize> are less
than C<$minsize>.
The sub is assumed to understand more than 1 dimensions and broadcasting.
Its signature is C<inp(nparams); [ret]out()>. An example would be
sub evaluate_func_at {
my($xv) = @_;
my ($x1, $x2) = $xv->using(0,1);
return $x1**4 + ($x2-5)**4 + $x1*$x2;
}
Here C<$xv> is a vector holding the current values of the parameters
being fitted which are then sliced out explicitly as C<$x1> and C<$x2>.
C<$ssize> gives a very very approximate estimate of how close we might
be - it might be miles wrong. It is the largest Euclidean distance between
the first vertex and any other. If it is not very small, the algorithm
has not converged.
=head1 FUNCTIONS
=head2 simplex
=for ref
Simplex optimization routine
Mutates its C<$init> input if given as a full simplex (dims C<n,n+1>).
=for usage
($optimum,$ssize,$optval) = simplex($init,$initsize,$minsize,
$maxiter,
sub {evaluate_func_at($_[0])},
sub {display_simplex($_[0])}
);
See module C<PDL::Opt::Simplex> for more information.
=head1 CAVEATS
Do not use the simplex method if your function has local minima.
It will not work. Use genetic algorithms or simulated annealing
or conjugate gradient or momentum gradient descent.
They will not really work either but they are not guaranteed not to work ;)
(if you have infinite time, simulated annealing is guaranteed to work
but only after it has visited every point in your space).
=head1 SEE ALSO
=over
=item L<PDL::Opt::Simplex::Simple> - Use names for Simplex-optimized values
=item L<PDL::Opt::ParticleSwarm> - A PDL implementation of Particle Swarm
=item L<PDL::Opt::ParticleSwarm::Simple> - Use names for Particle Swarm-optimized values
=item L<https://web.archive.org/web/19981206200518/http://chem1.nrl.navy.mil/~shaffer/chemoweb.html> - Ron Shaffer's chemometrics web page and references therein (archive from 1998)
=back
The demonstration (Examples/Simplex/tsimp.pl and tsimp2.pl).
=head1 AUTHOR
Copyright(C) 1997 Tuomas J. Lukka.
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation under certain
conditions. For details, see the file COPYING in the PDL
distribution. If this file is separated from the PDL distribution,
the copyright notice should be included in the file.
=cut