|
287 | 287 | "\n", |
288 | 288 | " Parameters\n", |
289 | 289 | " ----------\n", |
290 | | - " X : {array-like}, shape = [n_samples, n_features]\n", |
291 | | - " Training vectors, where n_samples is the number of samples and\n", |
| 290 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 291 | + " Training vectors, where n_examples is the number of examples and\n", |
292 | 292 | " n_features is the number of features.\n", |
293 | | - " y : array-like, shape = [n_samples]\n", |
| 293 | + " y : array-like, shape = [n_examples]\n", |
294 | 294 | " Target values.\n", |
295 | 295 | "\n", |
296 | 296 | " Returns\n", |
|
744 | 744 | " plt.xlim(xx1.min(), xx1.max())\n", |
745 | 745 | " plt.ylim(xx2.min(), xx2.max())\n", |
746 | 746 | "\n", |
747 | | - " # plot class samples\n", |
| 747 | + " # plot class examples\n", |
748 | 748 | " for idx, cl in enumerate(np.unique(y)):\n", |
749 | 749 | " plt.scatter(x=X[y == cl, 0], \n", |
750 | 750 | " y=X[y == cl, 1],\n", |
|
916 | 916 | "\n", |
917 | 917 | " Parameters\n", |
918 | 918 | " ----------\n", |
919 | | - " X : {array-like}, shape = [n_samples, n_features]\n", |
920 | | - " Training vectors, where n_samples is the number of samples and\n", |
| 919 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 920 | + " Training vectors, where n_examples is the number of examples and\n", |
921 | 921 | " n_features is the number of features.\n", |
922 | | - " y : array-like, shape = [n_samples]\n", |
| 922 | + " y : array-like, shape = [n_examples]\n", |
923 | 923 | " Target values.\n", |
924 | 924 | "\n", |
925 | 925 | " Returns\n", |
|
1178 | 1178 | " Weights after fitting.\n", |
1179 | 1179 | " cost_ : list\n", |
1180 | 1180 | " Sum-of-squares cost function value averaged over all\n", |
1181 | | - " training samples in each epoch.\n", |
| 1181 | + " training examples in each epoch.\n", |
1182 | 1182 | "\n", |
1183 | 1183 | " \n", |
1184 | 1184 | " \"\"\"\n", |
|
1194 | 1194 | "\n", |
1195 | 1195 | " Parameters\n", |
1196 | 1196 | " ----------\n", |
1197 | | - " X : {array-like}, shape = [n_samples, n_features]\n", |
1198 | | - " Training vectors, where n_samples is the number of samples and\n", |
| 1197 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 1198 | + " Training vectors, where n_examples is the number of examples and\n", |
1199 | 1199 | " n_features is the number of features.\n", |
1200 | | - " y : array-like, shape = [n_samples]\n", |
| 1200 | + " y : array-like, shape = [n_examples]\n", |
1201 | 1201 | " Target values.\n", |
1202 | 1202 | "\n", |
1203 | 1203 | " Returns\n", |
|
1401 | 1401 | "name": "python", |
1402 | 1402 | "nbconvert_exporter": "python", |
1403 | 1403 | "pygments_lexer": "ipython3", |
1404 | | - "version": "3.7.3" |
| 1404 | + "version": "3.7.1" |
1405 | 1405 | } |
1406 | 1406 | }, |
1407 | 1407 | "nbformat": 4, |
|
0 commit comments