|
287 | 287 | "\n",
|
288 | 288 | " Parameters\n",
|
289 | 289 | " ----------\n",
|
290 |
| - " X : {array-like}, shape = [n_samples, n_features]\n", |
291 |
| - " Training vectors, where n_samples is the number of samples and\n", |
| 290 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 291 | + " Training vectors, where n_examples is the number of examples and\n", |
292 | 292 | " n_features is the number of features.\n",
|
293 |
| - " y : array-like, shape = [n_samples]\n", |
| 293 | + " y : array-like, shape = [n_examples]\n", |
294 | 294 | " Target values.\n",
|
295 | 295 | "\n",
|
296 | 296 | " Returns\n",
|
|
744 | 744 | " plt.xlim(xx1.min(), xx1.max())\n",
|
745 | 745 | " plt.ylim(xx2.min(), xx2.max())\n",
|
746 | 746 | "\n",
|
747 |
| - " # plot class samples\n", |
| 747 | + " # plot class examples\n", |
748 | 748 | " for idx, cl in enumerate(np.unique(y)):\n",
|
749 | 749 | " plt.scatter(x=X[y == cl, 0], \n",
|
750 | 750 | " y=X[y == cl, 1],\n",
|
|
916 | 916 | "\n",
|
917 | 917 | " Parameters\n",
|
918 | 918 | " ----------\n",
|
919 |
| - " X : {array-like}, shape = [n_samples, n_features]\n", |
920 |
| - " Training vectors, where n_samples is the number of samples and\n", |
| 919 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 920 | + " Training vectors, where n_examples is the number of examples and\n", |
921 | 921 | " n_features is the number of features.\n",
|
922 |
| - " y : array-like, shape = [n_samples]\n", |
| 922 | + " y : array-like, shape = [n_examples]\n", |
923 | 923 | " Target values.\n",
|
924 | 924 | "\n",
|
925 | 925 | " Returns\n",
|
|
1178 | 1178 | " Weights after fitting.\n",
|
1179 | 1179 | " cost_ : list\n",
|
1180 | 1180 | " Sum-of-squares cost function value averaged over all\n",
|
1181 |
| - " training samples in each epoch.\n", |
| 1181 | + " training examples in each epoch.\n", |
1182 | 1182 | "\n",
|
1183 | 1183 | " \n",
|
1184 | 1184 | " \"\"\"\n",
|
|
1194 | 1194 | "\n",
|
1195 | 1195 | " Parameters\n",
|
1196 | 1196 | " ----------\n",
|
1197 |
| - " X : {array-like}, shape = [n_samples, n_features]\n", |
1198 |
| - " Training vectors, where n_samples is the number of samples and\n", |
| 1197 | + " X : {array-like}, shape = [n_examples, n_features]\n", |
| 1198 | + " Training vectors, where n_examples is the number of examples and\n", |
1199 | 1199 | " n_features is the number of features.\n",
|
1200 |
| - " y : array-like, shape = [n_samples]\n", |
| 1200 | + " y : array-like, shape = [n_examples]\n", |
1201 | 1201 | " Target values.\n",
|
1202 | 1202 | "\n",
|
1203 | 1203 | " Returns\n",
|
|
1401 | 1401 | "name": "python",
|
1402 | 1402 | "nbconvert_exporter": "python",
|
1403 | 1403 | "pygments_lexer": "ipython3",
|
1404 |
| - "version": "3.7.3" |
| 1404 | + "version": "3.7.1" |
1405 | 1405 | }
|
1406 | 1406 | },
|
1407 | 1407 | "nbformat": 4,
|
|
0 commit comments