-
Notifications
You must be signed in to change notification settings - Fork 106
/
Copy pathclustering_spark.py
74 lines (58 loc) · 2.26 KB
/
clustering_spark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from pyspark.mllib.clustering import KMeans
from pyspark import SparkContext
import dautil as dl
import csv
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.colors import Normalize
def error(point, clusters):
center = clusters.centers[clusters.predict(point)]
return dl.stats.wssse(point, center)
sc = SparkContext()
csv_file = dl.data.get_direct_marketing_csv()
lines = sc.textFile(csv_file)
header = lines.first().split(',')
cols_set = set(['recency', 'history', 'spend'])
select_cols = [i for i, col in enumerate(header) if col in cols_set]
header_rdd = lines.filter(lambda l: 'recency' in l)
noheader_rdd = lines.subtract(header_rdd)
temp = noheader_rdd.map(lambda v: list(csv.reader([v]))[0])\
.map(lambda p: (int(p[select_cols[0]]),
dl.data.centify(p[select_cols[1]]),
dl.data.centify(p[select_cols[2]])))
# spend > 0
temp = temp.filter(lambda x: x[2] > 0)
points = []
clusters = None
for i in range(2, 28):
clusters = KMeans.train(temp, i, maxIterations=10,
runs=10, initializationMode="random")
val = temp.map(lambda point: error(point, clusters))\
.reduce(lambda x, y: x + y)
points.append((i, val))
dl.options.mimic_seaborn()
fig, [ax, ax2] = plt.subplots(2, 1)
ax.set_title('k-means Clusters')
ax.set_xlabel('Number of clusters')
ax.set_ylabel('WSSSE')
dl.plotting.plot_points(ax, points)
collected = temp.collect()
recency, history, spend = zip(*collected)
indices = [clusters.predict(c) for c in collected]
ax2.set_title('Clusters for spend, history and recency')
ax2.set_xlabel('history (cents)')
ax2.set_ylabel('spend (cents)')
markers = dl.plotting.map_markers(indices)
colors = dl.plotting.sample_hex_cmap(name='hot', ncolors=len(set(recency)))
for h, s, r, m in zip(history, spend, recency, markers):
ax2.scatter(h, s, s=20 + r, marker=m, c=colors[r-1])
cma = mpl.colors.ListedColormap(colors, name='from_list', N=None)
norm = Normalize(min(recency), max(recency))
msm = mpl.cm.ScalarMappable(cmap=cma, norm=norm)
msm.set_array([])
fig.colorbar(msm, label='Recency')
for i, center in enumerate(clusters.clusterCenters):
recency, history, spend = center
ax2.text(history, spend, str(i))
plt.tight_layout()
plt.show()