diff --git a/Chapter11/Exercise150-155/Exercise150-155.ipynb b/Chapter11/Exercise150-155/Exercise150-155.ipynb
deleted file mode 100644
index 4ec1969..0000000
--- a/Chapter11/Exercise150-155/Exercise150-155.ipynb
+++ /dev/null
@@ -1,827 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " 140.5625 | \n",
- " 55.68378214 | \n",
- " -0.234571412 | \n",
- " -0.699648398 | \n",
- " 3.199832776 | \n",
- " 19.11042633 | \n",
- " 7.975531794 | \n",
- " 74.24222492 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 102.507812 | \n",
- " 58.882430 | \n",
- " 0.465318 | \n",
- " -0.515088 | \n",
- " 1.677258 | \n",
- " 14.860146 | \n",
- " 10.576487 | \n",
- " 127.393580 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 103.015625 | \n",
- " 39.341649 | \n",
- " 0.323328 | \n",
- " 1.051164 | \n",
- " 3.121237 | \n",
- " 21.744669 | \n",
- " 7.735822 | \n",
- " 63.171909 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 136.750000 | \n",
- " 57.178449 | \n",
- " -0.068415 | \n",
- " -0.636238 | \n",
- " 3.642977 | \n",
- " 20.959280 | \n",
- " 6.896499 | \n",
- " 53.593661 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 88.726562 | \n",
- " 40.672225 | \n",
- " 0.600866 | \n",
- " 1.123492 | \n",
- " 1.178930 | \n",
- " 11.468720 | \n",
- " 14.269573 | \n",
- " 252.567306 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 93.570312 | \n",
- " 46.698114 | \n",
- " 0.531905 | \n",
- " 0.416721 | \n",
- " 1.636288 | \n",
- " 14.545074 | \n",
- " 10.621748 | \n",
- " 131.394004 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " 140.5625 55.68378214 -0.234571412 -0.699648398 3.199832776 \\\n",
- "0 102.507812 58.882430 0.465318 -0.515088 1.677258 \n",
- "1 103.015625 39.341649 0.323328 1.051164 3.121237 \n",
- "2 136.750000 57.178449 -0.068415 -0.636238 3.642977 \n",
- "3 88.726562 40.672225 0.600866 1.123492 1.178930 \n",
- "4 93.570312 46.698114 0.531905 0.416721 1.636288 \n",
- "\n",
- " 19.11042633 7.975531794 74.24222492 0 \n",
- "0 14.860146 10.576487 127.393580 0 \n",
- "1 21.744669 7.735822 63.171909 0 \n",
- "2 20.959280 6.896499 53.593661 0 \n",
- "3 11.468720 14.269573 252.567306 0 \n",
- "4 14.545074 10.621748 131.394004 0 "
- ]
- },
- "execution_count": 1,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "import numpy as np\n",
- "df = pd.read_csv('HTRU_2.csv')\n",
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Mean of integrated profile | \n",
- " Standard deviation of integrated profile | \n",
- " Excess kurtosis of integrated profile | \n",
- " Skewness of integrated profile | \n",
- " Mean of DM-SNR curve | \n",
- " Standard deviation of DM-SNR curve | \n",
- " Excess kurtosis of DM-SNR curve | \n",
- " Skewness of DM-SNR curve | \n",
- " Class | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " 140.562500 | \n",
- " 55.683782 | \n",
- " -0.234571 | \n",
- " -0.699648 | \n",
- " 3.199833 | \n",
- " 19.110426 | \n",
- " 7.975532 | \n",
- " 74.242225 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " 102.507812 | \n",
- " 58.882430 | \n",
- " 0.465318 | \n",
- " -0.515088 | \n",
- " 1.677258 | \n",
- " 14.860146 | \n",
- " 10.576487 | \n",
- " 127.393580 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " 103.015625 | \n",
- " 39.341649 | \n",
- " 0.323328 | \n",
- " 1.051164 | \n",
- " 3.121237 | \n",
- " 21.744669 | \n",
- " 7.735822 | \n",
- " 63.171909 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " 136.750000 | \n",
- " 57.178449 | \n",
- " -0.068415 | \n",
- " -0.636238 | \n",
- " 3.642977 | \n",
- " 20.959280 | \n",
- " 6.896499 | \n",
- " 53.593661 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " 88.726562 | \n",
- " 40.672225 | \n",
- " 0.600866 | \n",
- " 1.123492 | \n",
- " 1.178930 | \n",
- " 11.468720 | \n",
- " 14.269573 | \n",
- " 252.567306 | \n",
- " 0 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Mean of integrated profile Standard deviation of integrated profile \\\n",
- "0 140.562500 55.683782 \n",
- "1 102.507812 58.882430 \n",
- "2 103.015625 39.341649 \n",
- "3 136.750000 57.178449 \n",
- "4 88.726562 40.672225 \n",
- "\n",
- " Excess kurtosis of integrated profile Skewness of integrated profile \\\n",
- "0 -0.234571 -0.699648 \n",
- "1 0.465318 -0.515088 \n",
- "2 0.323328 1.051164 \n",
- "3 -0.068415 -0.636238 \n",
- "4 0.600866 1.123492 \n",
- "\n",
- " Mean of DM-SNR curve Standard deviation of DM-SNR curve \\\n",
- "0 3.199833 19.110426 \n",
- "1 1.677258 14.860146 \n",
- "2 3.121237 21.744669 \n",
- "3 3.642977 20.959280 \n",
- "4 1.178930 11.468720 \n",
- "\n",
- " Excess kurtosis of DM-SNR curve Skewness of DM-SNR curve Class \n",
- "0 7.975532 74.242225 0 \n",
- "1 10.576487 127.393580 0 \n",
- "2 7.735822 63.171909 0 \n",
- "3 6.896499 53.593661 0 \n",
- "4 14.269573 252.567306 0 "
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df = pd.read_csv('HTRU_2.csv', header = None)\n",
- "df.columns = [['Mean of integrated profile', 'Standard deviation of integrated profile', \n",
- " 'Excess kurtosis of integrated profile', 'Skewness of integrated profile',\n",
- " 'Mean of DM-SNR curve', 'Standard deviation of DM-SNR curve',\n",
- " 'Excess kurtosis of DM-SNR curve', 'Skewness of DM-SNR curve', 'Class' ]]\n",
- "\n",
- "df.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "RangeIndex: 17898 entries, 0 to 17897\n",
- "Data columns (total 9 columns):\n",
- "(Mean of integrated profile,) 17898 non-null float64\n",
- "(Standard deviation of integrated profile,) 17898 non-null float64\n",
- "(Excess kurtosis of integrated profile,) 17898 non-null float64\n",
- "(Skewness of integrated profile,) 17898 non-null float64\n",
- "(Mean of DM-SNR curve,) 17898 non-null float64\n",
- "(Standard deviation of DM-SNR curve,) 17898 non-null float64\n",
- "(Excess kurtosis of DM-SNR curve,) 17898 non-null float64\n",
- "(Skewness of DM-SNR curve,) 17898 non-null float64\n",
- "(Class,) 17898 non-null int64\n",
- "dtypes: float64(8), int64(1)\n",
- "memory usage: 1.2 MB\n"
- ]
- }
- ],
- "source": [
- "df.info()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "17898"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "len(df)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Exercise152 begins from here"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.linear_model import LogisticRegression\n",
- "from sklearn.model_selection import cross_val_score"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [],
- "source": [
- "X = df.iloc[:, 0:8]\n",
- "y = df.iloc[:, 8]"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [],
- "source": [
- "def clf_model(model):\n",
- " clf = model\n",
- "\n",
- " scores = cross_val_score(clf, X, y)\n",
- "\n",
- " print('Scores:', scores)\n",
- " print('Mean score:', scores.mean())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.9740238 0.98223265 0.97686505]\n",
- "Mean score: 0.9777071651161332\n"
- ]
- }
- ],
- "source": [
- "clf_model(LogisticRegression(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Exercise153 begins from here"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.95692978 0.92474019 0.94836547]\n",
- "Mean score: 0.9433451467026904\n"
- ]
- }
- ],
- "source": [
- "from sklearn.naive_bayes import GaussianNB\n",
- "clf_model(GaussianNB())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.96899615 0.97200805 0.97082984]\n",
- "Mean score: 0.9706113439320188\n"
- ]
- }
- ],
- "source": [
- "from sklearn.neighbors import KNeighborsClassifier\n",
- "clf_model(KNeighborsClassifier())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.96782303 0.96161582 0.9673093 ]\n",
- "Mean score: 0.9655827179728252\n"
- ]
- }
- ],
- "source": [
- "from sklearn.tree import DecisionTreeClassifier\n",
- "clf_model(DecisionTreeClassifier(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.97586727 0.97820986 0.97720034]\n",
- "Mean score: 0.9770924870413066\n"
- ]
- }
- ],
- "source": [
- "from sklearn.ensemble import RandomForestClassifier\n",
- "clf_model(RandomForestClassifier(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Exercise154 begins from here"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Class 17898\n",
- "dtype: int64"
- ]
- },
- "execution_count": 18,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df.Class.count()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Class 1639\n",
- "dtype: int64"
- ]
- },
- "execution_count": 19,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df[df.Class == 1].Class.count()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 20,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "Class 0.091574\n",
- "dtype: float64"
- ]
- },
- "execution_count": 20,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "df[df.Class == 1].Class.count()/df.Class.count()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [],
- "source": [
- "from sklearn.metrics import classification_report\n",
- "from sklearn.metrics import confusion_matrix\n",
- "from sklearn.model_selection import train_test_split"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {},
- "outputs": [],
- "source": [
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {},
- "outputs": [],
- "source": [
- "def confusion(model):\n",
- " clf = model\n",
- " clf.fit(X_train, y_train)\n",
- " y_pred = clf.predict(X_test)\n",
- " print('Confusion Matrix:', confusion_matrix(y_test, y_pred))\n",
- " print('Classification Report:', classification_report(y_test, y_pred))\n",
- " return clf"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Confusion Matrix: [[4094 21]\n",
- " [ 63 297]]\n",
- "Classification Report: precision recall f1-score support\n",
- "\n",
- " 0 0.98 0.99 0.99 4115\n",
- " 1 0.93 0.82 0.88 360\n",
- "\n",
- "avg / total 0.98 0.98 0.98 4475\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
- " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n",
- " penalty='l2', random_state=0, solver='liblinear', tol=0.0001,\n",
- " verbose=0, warm_start=False)"
- ]
- },
- "execution_count": 24,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "confusion(LogisticRegression(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Confusion Matrix: [[4077 38]\n",
- " [ 69 291]]\n",
- "Classification Report: precision recall f1-score support\n",
- "\n",
- " 0 0.98 0.99 0.99 4115\n",
- " 1 0.88 0.81 0.84 360\n",
- "\n",
- "avg / total 0.98 0.98 0.98 4475\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
- " metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n",
- " weights='uniform')"
- ]
- },
- "execution_count": 25,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "confusion(KNeighborsClassifier())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Confusion Matrix: [[3946 169]\n",
- " [ 52 308]]\n",
- "Classification Report: precision recall f1-score support\n",
- "\n",
- " 0 0.99 0.96 0.97 4115\n",
- " 1 0.65 0.86 0.74 360\n",
- "\n",
- "avg / total 0.96 0.95 0.95 4475\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "GaussianNB(priors=None)"
- ]
- },
- "execution_count": 26,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "confusion(GaussianNB())"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Confusion Matrix: [[4093 22]\n",
- " [ 61 299]]\n",
- "Classification Report: precision recall f1-score support\n",
- "\n",
- " 0 0.99 0.99 0.99 4115\n",
- " 1 0.93 0.83 0.88 360\n",
- "\n",
- "avg / total 0.98 0.98 0.98 4475\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n",
- " max_depth=None, max_features='auto', max_leaf_nodes=None,\n",
- " min_impurity_decrease=0.0, min_impurity_split=None,\n",
- " min_samples_leaf=1, min_samples_split=2,\n",
- " min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,\n",
- " oob_score=False, random_state=0, verbose=0, warm_start=False)"
- ]
- },
- "execution_count": 27,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "confusion(RandomForestClassifier(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 28,
- "metadata": {},
- "outputs": [],
- "source": [
- "#Exercise156 begins from here"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Scores: [0.97519692 0.98122695 0.97652976]\n",
- "Mean score: 0.9776512086736252\n"
- ]
- }
- ],
- "source": [
- "from sklearn.ensemble import AdaBoostClassifier\n",
- "clf_model(AdaBoostClassifier(random_state = 0))\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 30,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Confusion Matrix: [[4094 21]\n",
- " [ 63 297]]\n",
- "Classification Report: precision recall f1-score support\n",
- "\n",
- " 0 0.98 0.99 0.99 4115\n",
- " 1 0.93 0.82 0.88 360\n",
- "\n",
- "avg / total 0.98 0.98 0.98 4475\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,\n",
- " learning_rate=1.0, n_estimators=50, random_state=0)"
- ]
- },
- "execution_count": 30,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "confusion(AdaBoostClassifier(random_state = 0))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python_Workshop",
- "language": "python",
- "name": "python_workshop"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.7"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}