-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathadamw.py
138 lines (119 loc) · 5.52 KB
/
adamw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import _legacy_C_ops as _C_ops
from .optimizer import Optimizer
from passl.utils import logger
class AdamW(Optimizer):
def __init__(self,
params,
lr=0.001,
lr_func=None,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
use_master_param=False,
exp_avg_force_fp32=False,
grad_clip=None,
**args):
defaults = dict(
lr=lr,
lr_func=lr_func,
betas=betas,
eps=eps,
weight_decay=weight_decay,
use_master_param=use_master_param,
exp_avg_force_fp32=exp_avg_force_fp32,
grad_clip=grad_clip,
**args)
super(AdamW, self).__init__(params, defaults)
@paddle.no_grad()
def step(self):
for group in self.param_groups:
if group['grad_clip'] is not None:
group['grad_clip'](group['params'])
for p in group['params']:
grad = p.grad
if grad is None:
continue
if grad.is_selected_rows():
raise RuntimeError(
'Adafactor does not support sparse gradients.')
lr = self._get_lr(group)
state = self.state[p.name]
# State initialization
if len(state) == 0:
state['step'] = 0
dtype = p.dtype
if group['exp_avg_force_fp32']:
dtype = 'float32'
# Exponential moving average of gradient values
state['exp_avg'] = paddle.zeros_like(p, dtype=dtype)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = paddle.zeros_like(p, dtype='float32')
if group['use_master_param'] and p.dtype in {
paddle.float16, paddle.bfloat16
}:
state['master_param'] = paddle.cast(p, dtype='float32')
state['step'] += 1
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
beta1_pow = paddle.to_tensor(beta1**state['step'])
beta2_pow = paddle.to_tensor(beta2**state['step'])
with_decay = False
if group['weight_decay'] != 0.0:
with_decay = True
master_param = None
if group['use_master_param'] and p.dtype in {
paddle.float16, paddle.bfloat16
}:
master_param = state['master_param']
if getattr(p, 'has_sparse_grad', None):
index = getattr(p, 'index', None)
axis = getattr(p, 'axis', None)
assert axis == 0, 'Only support axis=0 now!'
assert index is not None
assert axis is not None
sub_p = paddle.gather(p, index, axis=axis)
sub_exp_avg = paddle.gather(exp_avg, index, axis=axis)
sub_exp_avg_sq = paddle.gather(
exp_avg_sq, index, axis=axis)
_, _, _, _, _, *_ = _C_ops.adamw(
sub_p, grad,
paddle.to_tensor(lr), sub_exp_avg, sub_exp_avg_sq,
beta1_pow, beta2_pow, master_param, sub_p, sub_exp_avg,
sub_exp_avg_sq, beta1_pow, beta2_pow, master_param,
'epsilon', group['eps'], 'lazy_mode', False,
'min_row_size_to_use_multithread', 1000, 'beta1',
beta1, 'beta2', beta2, "with_decay", with_decay,
'coeff', group['weight_decay'], 'multi_precision',
master_param is not None, 'lr_ratio', 1.0)
p.scatter_(index, sub_p)
exp_avg.scatter_(index, sub_exp_avg)
exp_avg_sq.scatter_(index, sub_exp_avg_sq)
else:
_, _, _, _, _, *_ = _C_ops.adamw(
p, grad,
paddle.to_tensor(lr), exp_avg, exp_avg_sq, beta1_pow,
beta2_pow, master_param, p, exp_avg, exp_avg_sq,
beta1_pow, beta2_pow, master_param, 'epsilon',
group['eps'], 'lazy_mode', False,
'min_row_size_to_use_multithread', 1000, 'beta1',
beta1, 'beta2', beta2, "with_decay", with_decay,
'coeff', group['weight_decay'], 'multi_precision',
master_param is not None, 'lr_ratio', 1.0)