-
Notifications
You must be signed in to change notification settings - Fork 2.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PaddleDetection的ppyoloe_seg算法的README.md缺乏 ONNX转换 + trtexec测试 #9289
Comments
你好,目前我们并不能保证所有模型都能够正常导出为ONNX格式并使用TensorRT推理。建议可以参考PP-YOLOE的文档,尝试对ppyoloe_seg模型进行导出和推理,如果遇到问题的话欢迎在这里交流~ |
@Bobholamovic 非常感谢你的回复。实际上,我已经尝试使用PPYOLO-E的ONNX导出和TRTEXEC测试脚本,具体日志如下:
|
我使用了百度Docker容器:ccr-2vdh3abv-pub.cnc.bj.baidubce.com/paddlepaddle/paddle:2.6.2-gpu-cuda11.2-cudnn8.2-trt8.0。并且切换到PaddleDetection的最新环境release/2.8
|
看起来是动转静失败了,请使用最新的paddle 3.0版本试试~ |
@Bobholamovic 非常感谢,使用paddle 3.0版本容器(paddlepaddle/paddle:3.0.0b1-gpu-cuda11.8-cudnn8.6-trt8.5)可以将ppyoloe_seg目标分割算法的模型成功转换成ONNX格式
但是我把ONNX模型放到NVIDIA边缘端盒子Xaiver NX之后,转换成trt格式报错了???请问这个应该怎么解决
|
建议尝试使用paddle静态图格式(pdmodel或json格式)模型是否能够正常推理(参考教程)。如果paddle静态图格式模型可以正常推理,则比较可能是ONNX模型的问题,即paddle2onnx步骤引入的问题,建议可以在Paddle2ONNX仓库的issue区提一个issue反馈~ |
从测试结果来看,在GPU服务器上面使用tools/infer.py文件 + 训练好的ppyoloe_seg_s分割模型是可以正常推理的: λ b2a8e6f217f3 /data/zj/paddle/PaddleDetection CUDA_VISIBLE_DEVICES=1 python tools/infer.py -c configs/ppyoloe_seg/ppyoloe_seg_s_80e_xfy.yml -o use_gpu=true --infer_img=./dataset/xfy/images/val/646291.jpg --output_dir=./output/xfy/
grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
Warning: Unable to use numba in PP-Tracking, please install numba, for example(python3.7): `pip install numba==0.56.4`
Warning: Unable to use numba in PP-Tracking, please install numba, for example(python3.7): `pip install numba==0.56.4`
Warning: import ppdet from source directory without installing, run 'python setup.py install' to install ppdet firstly
W0206 07:06:38.705178 408 gpu_resources.cc:119] Please NOTE: device: 0, GPU Compute Capability: 8.6, Driver API Version: 12.3, Runtime API Version: 11.8
W0206 07:06:38.706279 408 gpu_resources.cc:164] device: 0, cuDNN Version: 8.9.
[02/06 07:06:39] ppdet.utils.checkpoint INFO: Finish loading model weights: output/ppyoloe_seg_s_80e_xfy/model_final.pdparams
loading annotations into memory...
Done (t=1.21s)
creating index...
index created!
loading annotations into memory...
Done (t=1.22s)
creating index...
index created!
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.23s/it]
[02/06 07:06:49] ppdet.engine INFO: Detection bbox results save in ./output/xfy/646291.jpg @Bobholamovic 这样是不是可以说明是ONNX格式转换问题,而不是Paddle实现的ppyoloe_seg算法问题? |
是的,这样比较可能是paddle2onnx步骤出现了问题。 |
文档链接&描述 Document Links & Description
在文档PP-YOLOE Instance segmentation中仅提供了该算法的训练记录,并没有相关的ONNX格式转换,以及trtexec测试,就像PP-YOLOE的实现
是否可以补全这部分内容,ppyoloe_seg算法可以适用于大部分实时实例分割场景,非常感谢!!!
请提出你的建议 Please give your suggestion
No response
The text was updated successfully, but these errors were encountered: