-
Notifications
You must be signed in to change notification settings - Fork 646
/
Copy pathnet.py
318 lines (277 loc) · 11.6 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
class Mind_SampledSoftmaxLoss_Layer(nn.Layer):
"""SampledSoftmaxLoss with LogUniformSampler
"""
def __init__(self,
num_classes,
n_sample,
unique=True,
remove_accidental_hits=True,
subtract_log_q=True,
num_true=1,
batch_size=None):
super(Mind_SampledSoftmaxLoss_Layer, self).__init__()
self.range_max = num_classes
self.n_sample = n_sample
self.unique = unique
self.remove_accidental_hits = remove_accidental_hits
self.subtract_log_q = subtract_log_q
self.num_true = num_true
self.prob = np.array([0.0] * self.range_max)
self.batch_size = batch_size
for i in range(1, self.range_max):
self.prob[i] = (np.log(i+2) - np.log(i+1)) / \
np.log(self.range_max + 1)
self.new_prob = paddle.assign(self.prob.astype("float32"))
self.log_q = paddle.log(-(paddle.exp((-paddle.log1p(self.new_prob) * 2
* n_sample)) - 1.0))
self.loss = nn.CrossEntropyLoss(soft_label=True)
def sample(self, labels):
"""Random sample neg_samples
"""
n_sample = self.n_sample
n_tries = 1 * n_sample
neg_samples = paddle.multinomial(
self.new_prob,
num_samples=n_sample,
replacement=self.unique is False)
true_log_probs = paddle.gather(self.log_q, labels)
samp_log_probs = paddle.gather(self.log_q, neg_samples)
return true_log_probs, samp_log_probs, neg_samples
def forward(self, inputs, labels, weights, bias):
"""forward
"""
# weights.stop_gradient = False
embedding_dim = paddle.shape(weights)[-1]
true_log_probs, samp_log_probs, neg_samples = self.sample(labels)
# print(neg_samples)
n_sample = neg_samples.shape[0]
b1 = paddle.shape(labels)[0]
b2 = paddle.shape(labels)[1]
all_ids = paddle.concat([labels.reshape((-1, )), neg_samples])
all_w = paddle.gather(weights, all_ids)
true_w = all_w[:-n_sample].reshape((-1, b2, embedding_dim))
sample_w = all_w[-n_sample:].reshape((n_sample, embedding_dim))
all_b = paddle.gather(bias, all_ids)
true_b = all_b[:-n_sample].reshape((-1, 1))
sample_b = all_b[-n_sample:]
# [B, D] * [B, 1,D]
true_logist = paddle.sum(paddle.multiply(true_w, inputs.unsqueeze(1)),
axis=-1) + true_b
# print(true_logist)
sample_logist = paddle.matmul(
inputs, sample_w, transpose_y=True) + sample_b
if self.remove_accidental_hits:
hit = (paddle.equal(labels[:, :], neg_samples))
padding = paddle.ones_like(sample_logist) * -1e30
sample_logist = paddle.where(hit, padding, sample_logist)
if self.subtract_log_q:
true_logist = true_logist - true_log_probs.unsqueeze(1)
sample_logist = sample_logist - samp_log_probs
out_logist = paddle.concat([true_logist, sample_logist], axis=1)
out_label = paddle.concat(
[
paddle.ones_like(true_logist) / self.num_true,
paddle.zeros_like(sample_logist)
],
axis=1)
out_label.stop_gradient = True
loss = self.loss(out_logist, out_label)
return loss, out_logist, out_label
class Mind_Capsual_Layer(nn.Layer):
"""Mind_Capsual_Layer
"""
def __init__(self,
input_units,
output_units,
iters=3,
maxlen=32,
k_max=3,
init_std=1.0,
batch_size=None):
super(Mind_Capsual_Layer, self).__init__()
self.iters = iters
self.input_units = input_units
self.output_units = output_units
self.maxlen = maxlen
self.init_std = init_std
self.k_max = k_max
self.batch_size = batch_size
# B2I routing
self.routing_logits = self.create_parameter(
shape=[1, self.k_max, self.maxlen],
attr=paddle.ParamAttr(
name="routing_logits", trainable=False),
default_initializer=nn.initializer.Normal(
mean=0.0, std=self.init_std))
# bilinear mapping
self.bilinear_mapping_matrix = self.create_parameter(
shape=[self.input_units, self.output_units],
attr=paddle.ParamAttr(
name="bilinear_mapping_matrix", trainable=True),
default_initializer=nn.initializer.Normal(
mean=0.0, std=self.init_std))
self.relu_layer = nn.Linear(self.output_units, self.output_units)
def squash(self, Z):
"""squash
"""
vec_squared_norm = paddle.sum(paddle.square(Z), axis=-1, keepdim=True)
scalar_factor = vec_squared_norm / \
(1 + vec_squared_norm) / paddle.sqrt(vec_squared_norm + 1e-8)
vec_squashed = scalar_factor * Z
return vec_squashed
def sequence_mask(self, lengths, maxlen=None, dtype="bool"):
"""sequence_mask
"""
batch_size = paddle.shape(lengths)[0]
if maxlen is None:
maxlen = lengths.max()
row_vector = paddle.arange(
0, maxlen,
1).unsqueeze(0).expand(shape=(batch_size, maxlen)).reshape(
(batch_size, -1, maxlen))
lengths = lengths.unsqueeze(-1)
mask = row_vector < lengths
return mask.astype(dtype)
def forward(self, item_his_emb, seq_len):
"""forward
Args:
item_his_emb : [B, seqlen, dim]
seq_len : [B, 1]
"""
batch_size = item_his_emb.shape[0]
seq_len_tile = paddle.tile(seq_len, [1, self.k_max])
mask = self.sequence_mask(seq_len_tile, self.maxlen)
pad = paddle.ones_like(mask, dtype="float32") * (-2**32 + 1)
# S*e
low_capsule_new = paddle.matmul(item_his_emb,
self.bilinear_mapping_matrix)
low_capsule_new_tile = paddle.tile(low_capsule_new, [1, 1, self.k_max])
low_capsule_new_tile = paddle.reshape(
low_capsule_new_tile,
[-1, self.maxlen, self.k_max, self.output_units])
low_capsule_new_tile = paddle.transpose(low_capsule_new_tile,
[0, 2, 1, 3])
low_capsule_new_tile = paddle.reshape(
low_capsule_new_tile,
[-1, self.k_max, self.maxlen, self.output_units])
low_capsule_new_nograd = paddle.assign(low_capsule_new_tile)
low_capsule_new_nograd.stop_gradient = True
B = paddle.tile(self.routing_logits,
[paddle.shape(item_his_emb)[0], 1, 1])
B.stop_gradient = True
for i in range(self.iters - 1):
B_mask = paddle.where(mask, B, pad)
# print(B_mask)
W = F.softmax(B_mask, axis=2)
W = paddle.unsqueeze(W, axis=2)
high_capsule_tmp = paddle.matmul(W, low_capsule_new_nograd)
# print(low_capsule_new_nograd.shape)
high_capsule = self.squash(high_capsule_tmp)
B_delta = paddle.matmul(
low_capsule_new_nograd,
paddle.transpose(high_capsule, [0, 1, 3, 2]))
B_delta = paddle.reshape(
B_delta, shape=[-1, self.k_max, self.maxlen])
B += B_delta
B_mask = paddle.where(mask, B, pad)
W = F.softmax(B_mask, axis=1)
W = paddle.unsqueeze(W, axis=2)
interest_capsule = paddle.matmul(W, low_capsule_new_tile)
interest_capsule = self.squash(interest_capsule)
high_capsule = paddle.reshape(interest_capsule,
[-1, self.k_max, self.output_units])
high_capsule = F.relu(self.relu_layer(high_capsule))
return high_capsule, W, seq_len
class MindLayer(nn.Layer):
"""MindLayer
"""
def __init__(self,
item_count,
embedding_dim,
hidden_size,
neg_samples=100,
maxlen=30,
pow_p=1.0,
capsual_iters=3,
capsual_max_k=3,
capsual_init_std=1.0,
batch_size=None):
super(MindLayer, self).__init__()
self.pow_p = pow_p
self.hidden_size = hidden_size
self.item_count = item_count
self.item_id_range = paddle.arange(end=item_count, dtype="int64")
self.item_emb = nn.Embedding(
item_count,
embedding_dim,
padding_idx=0,
weight_attr=paddle.ParamAttr(
name="item_emb",
initializer=nn.initializer.XavierUniform(
fan_in=item_count, fan_out=embedding_dim)))
# print(self.item_emb.weight)
self.embedding_bias = self.create_parameter(
shape=(item_count, ),
is_bias=True,
attr=paddle.ParamAttr(
name="embedding_bias", trainable=False),
default_initializer=nn.initializer.Constant(0))
self.capsual_layer = Mind_Capsual_Layer(
embedding_dim,
hidden_size,
maxlen=maxlen,
iters=capsual_iters,
k_max=capsual_max_k,
init_std=capsual_init_std,
batch_size=batch_size)
self.sampled_softmax = Mind_SampledSoftmaxLoss_Layer(
item_count, neg_samples, batch_size=batch_size)
def label_aware_attention(self, keys, query):
"""label_aware_attention
"""
weight = paddle.matmul(keys,
paddle.reshape(query, [
-1, paddle.shape(query)[-1], 1
])) #[B, K, dim] * [B, dim, 1] == [B, k, 1]
weight = paddle.squeeze(weight, axis=-1)
weight = paddle.pow(weight, self.pow_p) # [x,k_max]
weight = F.softmax(weight) #[x, k_max]
weight = paddle.unsqueeze(weight, 1) #[B, 1, k_max]
output = paddle.matmul(
weight, keys) #[B, 1, k_max] * [B, k_max, dim] => [B, 1, dim]
return output.squeeze(1), weight
def forward(self, hist_item, seqlen, labels=None):
"""forward
Args:
hist_item : [B, maxlen, 1]
seqlen : [B, 1]
target : [B, 1]
"""
# print(hist_item)
hit_item_emb = self.item_emb(hist_item) # [B, seqlen, embed_dim]
user_cap, cap_weights, cap_mask = self.capsual_layer(hit_item_emb,
seqlen)
if not self.training:
return user_cap, cap_weights
target_emb = self.item_emb(labels)
user_emb, W = self.label_aware_attention(user_cap, target_emb)
return self.sampled_softmax(
user_emb, labels, self.item_emb.weight,
self.embedding_bias), W, user_cap, cap_weights, cap_mask