|
| 1 | +# PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller |
| 2 | + |
| 3 | +## Reference |
| 4 | + |
| 5 | +> Xu, Jiacong, Zixiang Xiong, and Shankar P. Bhattacharyya. "PIDNet: A Real-Time Semantic Segmentation Network Inspired by PID Controllers." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. |
| 6 | +
|
| 7 | +## Performance |
| 8 | + |
| 9 | +### Cityscapes |
| 10 | + |
| 11 | +| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links | |
| 12 | +|-|-|-|-|-|-|-|-| |
| 13 | +|PIDNet|PIDNet-Small |1024x1024|120000|78.48%|79.02%|79.68%|[model](https://paddleseg.bj.bcebos.com/dygraph/pidnet/pidnet_small_cityscapes_1024x1024_120k/model.pdparams) \| [log](https://paddleseg.bj.bcebos.com/dygraph/pidnet/pidnet_small_cityscapes_1024x1024_120k/pidnet_small.log) \| [vdl](https://paddlepaddle.org.cn/paddle/visualdl/service/app?id=57dda9c34cd06a4b2996118df03583c9)| |
| 14 | +|PIDNet|PIDNet_Medium|1024x1024|120000| | | | |
| 15 | +|PIDNet|PIDNet-Large |1024x1024|120000| | | | |
| 16 | + |
| 17 | + |
| 18 | +#### official weight |
| 19 | + |
| 20 | +| Model | Backbone | Resolution | Training Iters | mIoU | mIoU (flip) | mIoU (ms+flip) | Links | |
| 21 | +|-|-|-|-|-|-|-|-| |
| 22 | +|PIDNet|PIDNet-Small |1024x1024|120000|78.74%|79.53%|80.28%|[model](https://paddleseg.bj.bcebos.com/dygraph/pidnet/pidnet_small_2xb6-120k_1024x1024-cityscapes.pdparams)| |
| 23 | +|PIDNet|PIDNet_Medium|1024x1024|120000|80.22%|81.07%|81.50%|[model](https://paddleseg.bj.bcebos.com/dygraph/pidnet/pidnet_medium_2xb6-120k_1024x1024-cityscapes.pdparams)| |
| 24 | +|PIDNet|PIDNet-Large |1024x1024|120000|80.89%|81.41%|81.92%|[model](https://paddleseg.bj.bcebos.com/dygraph/pidnet/pidnet_large_2xb6-120k_1024x1024-cityscapes.pdparams)| |
| 25 | + |
| 26 | + |
| 27 | +#### NOTE: |
| 28 | + |
| 29 | +The `weight` in the training parameters is dataset dependent, if you are using another dataset, modify the weight please. |
| 30 | + |
| 31 | +``` yaml |
| 32 | +# follow the OCNet, compute the weights by 1/log(pixel_count) |
| 33 | +# see https://github.com/openseg-group/OCNet.pytorch/issues/14 |
| 34 | +weight: &weight [0.8373, 0.9180, 0.8660, 1.0345, 1.0166, 0.9969, 0.9754, |
| 35 | + 1.0489, 0.8786, 1.0023, 0.9539, 0.9843, 1.1116, 0.9037, |
| 36 | + 1.0865, 1.0955, 1.0865, 1.1529, 1.0507] |
| 37 | +``` |
0 commit comments