Skip to content

Commit ef44a48

Browse files
authored
[] (#3205)
Signed-off-by: Yulv-git <[email protected]>
1 parent 6fd48f1 commit ef44a48

File tree

30 files changed

+48
-48
lines changed

30 files changed

+48
-48
lines changed

EISeg/docs/remote_sensing.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@ conda install gdal
4141

4242
### 2.1 数据加载
4343

44-
目前EISeg仅支持了*.tif/tiff图像后缀的的遥感影像读取,由于训练数据都是来自于RGB三通道的遥感图像切片,因此交互分割也仅在RGB三通道上完成,也就表示EISeg支持多波段数据的波段选择。
44+
目前EISeg仅支持了*.tif/tiff图像后缀的遥感影像读取,由于训练数据都是来自于RGB三通道的遥感图像切片,因此交互分割也仅在RGB三通道上完成,也就表示EISeg支持多波段数据的波段选择。
4545

4646
当使用EISeg打开GTiff图像时,会获取当前波段数,可通过波段设置的下拉列表进行设置。默认为[b1, b1, b1]。下例展示的是天宫一号多光谱数据设置真彩色:
4747

@@ -63,7 +63,7 @@ conda install gdal
6363
当打开标注的GTiff图像带有地理参考,可设置EISeg保存时保存为带有地理参考的GTiff和ESRI Shapefile。
6464

6565
- GTiff:已成为GIS和卫星遥感应用的行业图像标准文件。
66-
- ESRI Shapefile:是最常见的的矢量数据格式,Shapefile文件是美国环境系统研究所(ESRI)所研制的GIS文件系统格式文件,是工业标准的矢量数据文件。 所有的商业和开源GIS软件都支持。无处不在的它已成为行业标准。
66+
- ESRI Shapefile:是最常见的矢量数据格式,Shapefile文件是美国环境系统研究所(ESRI)所研制的GIS文件系统格式文件,是工业标准的矢量数据文件。 所有的商业和开源GIS软件都支持。无处不在的它已成为行业标准。
6767

6868
![82jlu-no59o](https://user-images.githubusercontent.com/71769312/141137726-76457454-5e9c-4ad0-85d6-d03f658ee63c.gif)
6969

Matting/deploy/human_matting_android_demo/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ This demo uses the MODNet with HRNet_W18 backbone to perform human matting. Plea
6363

6464
In order to be able to infer on Android phones, the dynamic graph model needs to be exported as a static graph model, and the input size of the image should be fixed when exporting.
6565

66-
First, update the [PaddleSeg](https://github.com/paddlepaddle/paddleseg/tree/develop) repository. Then `cd` to the `PaddleSeg/contrib/Matting` directory. Then put the downloaded modnet-hrnet_w18.pdparams (traing by youself is ok) on current directory(`PaddleSeg/contrib/Matting`). After that, fix the config file `configs/modnet_mobilenetv2.yml`(note: hrnet18 is used, but the config file `modnet_hrnet_w18.yml` is based on `modnet_mobilenetv2.yml`), where,modify the val_dataset field as follows:
66+
First, update the [PaddleSeg](https://github.com/paddlepaddle/paddleseg/tree/develop) repository. Then `cd` to the `PaddleSeg/contrib/Matting` directory. Then put the downloaded modnet-hrnet_w18.pdparams (training by youself is ok) on current directory(`PaddleSeg/contrib/Matting`). After that, fix the config file `configs/modnet_mobilenetv2.yml`(note: hrnet18 is used, but the config file `modnet_hrnet_w18.yml` is based on `modnet_mobilenetv2.yml`), where,modify the val_dataset field as follows:
6767

6868
``` yml
6969
val_dataset:

Matting/ppmatting/models/backbone/resnet_vd.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -272,7 +272,7 @@ def __init__(self,
272272
block] if dilation_dict and block in dilation_dict else 1
273273

274274
# Actually block here is 'stage', and i is 'block' in 'stage'
275-
# At the stage 4, expand the the dilation_rate if given multi_grid
275+
# At the stage 4, expand the dilation_rate if given multi_grid
276276
if block == 3:
277277
dilation_rate = dilation_rate * multi_grid[i]
278278
###############################################################################

configs/pssl/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ Here we show the configuration files of two lightweight models, [STDC2](https://
2424

2525
There is no need to do this step if [STDC2](https://paddleseg.bj.bcebos.com/dygraph/pssl/stdc2_pssl_pretrained/model.pdparams) and [PPLite-Seg-B](https://paddleseg.bj.bcebos.com/dygraph/pssl/pp_liteseg_stdc2_pssl_pretrained/model.pdparams) are used.
2626

27-
Otherwise, checking the following steps for preparing the enviroment and the datasets:
27+
Otherwise, checking the following steps for preparing the environment and the datasets:
2828

2929
1. Make sure that PaddleSeg is well installed. See the [installation guide](https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.6/docs/install.md) for details.
3030

contrib/DomainAdaptation/models/gscnn.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -154,7 +154,7 @@ def forward(self, x, feat_list, s_input):
154154
input_shape[2:],
155155
mode='bilinear',
156156
align_corners=self.align_corners)
157-
cs = F.sigmoid(cs) # Ouput of shape stream
157+
cs = F.sigmoid(cs) # Output of shape stream
158158

159159
return [cs, ]
160160

contrib/LaneSeg/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -217,7 +217,7 @@ python export.py --help
217217
python deploy/python/infer.py \
218218
--config output/export/deploy.yaml \
219219
--image_path data/test_images/3.jpg \
220-
--save_dir ouput/results
220+
--save_dir output/results
221221
```
222222

223223
Run the following command to view more parameters.

contrib/LaneSeg/README_CN.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ python export.py --help
220220
python deploy/python/infer.py \
221221
--config output/export/deploy.yaml \
222222
--image_path data/test_images/3.jpg \
223-
--save_dir ouput/results
223+
--save_dir output/results
224224
```
225225

226226
更多参数信息请运行如下命令进行查看:

contrib/MedicalSeg/medicalseg/utils/utils.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ def get_image_list(image_path, valid_suffix=None, filter_key=None):
149149
Args:
150150
image_path(str): the image or image folder where you want to get a image list from.
151151
valid_suffix(tuple): Contain only the suffix you want to include.
152-
filter_key(dict): the key(ignore case) and whether you want to include it. e.g.:{"segmentation": True} will futher filter the imagename with segmentation in it.
152+
filter_key(dict): the key(ignore case) and whether you want to include it. e.g.:{"segmentation": True} will further filter the imagename with segmentation in it.
153153
154154
"""
155155
if valid_suffix is None:
@@ -213,18 +213,18 @@ def save_array(save_path, save_content, form, image_infor):
213213
"""
214214
if not isinstance(save_content, dict):
215215
raise TypeError(
216-
'The save_content need to be dict which the key is the save name and the value is the numpy array to be saved, but recieved {}'
216+
'The save_content need to be dict which the key is the save name and the value is the numpy array to be saved, but received {}'
217217
.format(type(save_content)))
218218

219219
for (key, val) in save_content.items():
220220
if not isinstance(val, np.ndarray):
221-
raise TypeError('We only save numpy array, but recieved {}'.format(
221+
raise TypeError('We only save numpy array, but received {}'.format(
222222
type(val)))
223223
if len(val.shape) > 3:
224224
save_content[key] = np.squeeze(val)
225225

226226
if not isinstance(form, Iterable):
227-
raise TypeError('The form need be iterable, but recieved {}'.format(
227+
raise TypeError('The form need be iterable, but received {}'.format(
228228
type(form)))
229229

230230
if save_path is not None:

contrib/MedicalSeg/nnunet/datasets/dataset.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -343,7 +343,7 @@ def setup_DA_params(self):
343343
if self.stage == 1 and self.cascade:
344344
self.data_aug_params["num_cached_per_thread"] = 2
345345

346-
self.data_aug_params['move_last_seg_chanel_to_data'] = True
346+
self.data_aug_params['move_last_seg_channel_to_data'] = True
347347
self.data_aug_params['cascade_do_cascade_augmentations'] = True
348348

349349
self.data_aug_params['cascade_random_binary_transform_p'] = 0.4

contrib/MedicalSeg/nnunet/transforms/augmentation.py

+4-4
Original file line numberDiff line numberDiff line change
@@ -150,8 +150,8 @@ def get_moreDA_augmentation(dataloader_train,
150150

151151
tr_transforms.append(RemoveLabelTransform(-1, 0))
152152

153-
if params.get("move_last_seg_chanel_to_data") is not None and params.get(
154-
"move_last_seg_chanel_to_data"):
153+
if params.get("move_last_seg_channel_to_data") is not None and params.get(
154+
"move_last_seg_channel_to_data"):
155155
tr_transforms.append(
156156
MoveSegAsOneHotToData(
157157
1, params.get("all_segmentation_labels"), 'seg', 'data'))
@@ -224,8 +224,8 @@ def get_moreDA_augmentation(dataloader_train,
224224
val_transforms.append(
225225
SegChannelSelectionTransform(params.get("selected_seg_channels")))
226226

227-
if params.get("move_last_seg_chanel_to_data") is not None and params.get(
228-
"move_last_seg_chanel_to_data"):
227+
if params.get("move_last_seg_channel_to_data") is not None and params.get(
228+
"move_last_seg_channel_to_data"):
229229
val_transforms.append(
230230
MoveSegAsOneHotToData(
231231
1, params.get("all_segmentation_labels"), 'seg', 'data'))

contrib/MedicalSeg/nnunet/transforms/default_config.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@
4949
"mask_was_used_for_normalization": None,
5050
"border_mode_data": "constant",
5151
"all_segmentation_labels": None,
52-
"move_last_seg_chanel_to_data": False,
52+
"move_last_seg_channel_to_data": False,
5353
"cascade_do_cascade_augmentations": False,
5454
"cascade_random_binary_transform_p": 0.4,
5555
"cascade_random_binary_transform_p_per_label": 1,

contrib/PP-HumanSeg/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ PP-HumanSegV2-Lite protrait segmentation model: **The inference speed is increas
5757
* Faster inference speed: We reduce the input resolution, which reduces the inference time and increases the receptive field.
5858
* Better robustness: Based on the idea of transfer learning, we first pretrain the model on a large general human segmentation dataset, and then finetune it on a small portrait segmentation dataset.
5959

60-
| Model Name | Best Input Shape | mIou(%) | Inference Time on Arm CPU(ms) | Modle Size(MB) | Config File | Links |
60+
| Model Name | Best Input Shape | mIou(%) | Inference Time on Arm CPU(ms) | Model Size(MB) | Config File | Links |
6161
| --- | --- | --- | ---| --- | --- | --- |
6262
| PP-HumanSegV1-Lite | 398x224 | 93.60 | 29.68 | 2.3 | [cfg](./configs/portrait_pp_humansegv1_lite.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv1_lite_398x224_inference_model_with_softmax.zip) |
6363
| PP-HumanSegV2-Lite | 256x144 | 96.63 | 15.86 | 5.4 | [cfg](./configs/portrait_pp_humansegv2_lite.yml) | [Checkpoint](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_pretrained.zip) \| [Inference Model (Argmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_inference_model.zip) \| [Inference Model (Softmax)](https://paddleseg.bj.bcebos.com/dygraph/pp_humanseg_v2/portrait_pp_humansegv2_lite_256x144_smaller/portrait_pp_humansegv2_lite_256x144_inference_model_with_softmax.zip) |

contrib/PaddleLabel/doc/CN/project/instance_segmentation.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ category{
120120
### 掩膜标注
121121

122122
1. 点击右侧“添加标签”,填写信息并创建标签
123-
1. 选择一个标签,点击左侧工具栏的“笔刷”(鼠标悬浮可以修改笔刷大小),在图像界面上按住鼠标左键绘制需要标注的物体内部,实例分割可以反复选择同一标签标注不同的实例,需要删除掩膜可以点击左侧工具栏的“橡皮擦”进行修改
123+
1. 选择一个标签,点击左侧工具栏的“笔刷”(鼠标悬浮可以修改笔刷大小),在图像界面上按住鼠标左键绘制需要标注的物体内部,实例分割可以反复选择同一标签标注不同的实例,需要删除掩膜可以点击左侧工具栏的“橡皮擦”进行修改
124124
1. **标注完成一个实例后,点击右上角"确定轮廓"进行实例确认**
125125
1. 点击左右按钮切换图像,重复上述操作,直到所有数据标注完毕
126126
1. 下方进度展示可以查看标注进度

contrib/PaddleLabel/doc/CN/training/PdLabel_PdClas.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ Arch:
7878
name: ShuffleNetV2_x0_25
7979
class_num: 3
8080
81-
# loss function config for traing/eval process
81+
# loss function config for training/eval process
8282
Loss:
8383
Train:
8484
- CELoss:

contrib/PaddleLabel/doc/EN/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ PaddleLabel aims to become an effective and flexible data annotation tool. There
88

99
## Install
1010

11-
Installing in a new enviroment is not required but suggested.
11+
Installing in a new environment is not required but suggested.
1212

1313
```python
1414
conda create -n pplabel python=3.9

contrib/PanopticDeepLab/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ English | [简体中文](README_CN.md)
44

55
The implementation of [Panoptic Deeplab](https://arxiv.org/abs/1911.10194) algorithm based on PaddlePaddle.
66

7-
Panoptic DeepLab has comfirmed that the bottem-up algorithm can achieve state-of-the-art effect for the first time。Panoptic DeepLab predicts three ouputs: Semantic Segmentation, Center Prediction and Center Regression。According to the principle of nearest distance, the pixels of instance category are gathered to the center of the instance to obtain the segmentation result. Finally, according to the rules of majority-vote, semantic segmentation results and instance segmentation results are fused to obtain the final panoptic segmentation results.
7+
Panoptic DeepLab has comfirmed that the bottem-up algorithm can achieve state-of-the-art effect for the first time。Panoptic DeepLab predicts three outputs: Semantic Segmentation, Center Prediction and Center Regression。According to the principle of nearest distance, the pixels of instance category are gathered to the center of the instance to obtain the segmentation result. Finally, according to the rules of majority-vote, semantic segmentation results and instance segmentation results are fused to obtain the final panoptic segmentation results.
88
It achieves segmentation by assigning each pixel to one category or instance.
99
![](./docs/panoptic_deeplab.jpg)
1010

contrib/PanopticSeg/paddlepanseg/runners/maskformer_runner.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -432,7 +432,7 @@ def compute_losses(self, net_out, data):
432432
# Retrieve the matching between the outputs and the targets
433433
indices = self.matcher(data, net_out)
434434

435-
# Compute the average number of target boxes accross all nodes, for normalization purposes
435+
# Compute the average number of target boxes across all nodes, for normalization purposes
436436
num_masks = sum(len(gt_ids) for gt_ids in data['gt_ids'])
437437
num_masks = paddle.to_tensor([num_masks], dtype='float32')
438438
n_ranks = paddle.distributed.get_world_size()

deploy/fastdeploy/semantic_segmentation/android/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
[English](README.md) | 简体中文
22
# 图像分割 PaddleSeg Android Demo 使用文档
33

4-
在 Android 上实现实时的人像分割功能,此 Demo 有很好的的易用性和开放性,如在 Demo 中跑自己训练好的模型等。
4+
在 Android 上实现实时的人像分割功能,此 Demo 有很好的易用性和开放性,如在 Demo 中跑自己训练好的模型等。
55

66
## 环境准备
77

deploy/fastdeploy/semantic_segmentation/rockchip/rv1126/README.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@ PaddleSeg模型导出,请参考其文档说明[模型导出](https://github.co
2929
### 3.3 导出须知
3030
请参考[模型导出](https://github.com/PaddlePaddle/PaddleSeg/blob/develop/docs/model_export_cn.md)`output_op`参数的说明,获取您部署所需的模型,比如是否带`argmax``softmax`算子
3131

32-
### 3.4 转换为为RV1126支持的INT8模型
32+
### 3.4 转换为RV1126支持的INT8模型
3333
瑞芯微RV1126仅支持INT8,将推理模型量化压缩为INT8模型,FastDeploy模型量化的方法及一键自动化压缩工具可以参考[模型量化](../../../quantize/README.md)
3434

3535
## 4. 详细的部署示例

deploy/python/infer_dataset.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -309,7 +309,7 @@ def main(args):
309309
if __name__ == '__main__':
310310
"""
311311
Based on the infer config and dataset, this program read the test and
312-
label images, applys the transfors, run the predictor, ouput the accuracy.
312+
label images, applys the transfors, run the predictor, output the accuracy.
313313
314314
For example:
315315
python deploy/python/infer_dataset.py \

docs/deployment/inference/inference_cn.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@
1616

1717
在终端输入以下命令进行预测:
1818
```shell
19-
python deploy/python/infer.py --config /path/to/deploy.yaml --image_path # 如果导出指定了input_shape,传入infer的的图片大小或者经过deploy.yaml变换的图片大小需要和 input_shape 保持一致
19+
python deploy/python/infer.py --config /path/to/deploy.yaml --image_path # 如果导出指定了input_shape,传入infer的图片大小或者经过deploy.yaml变换的图片大小需要和 input_shape 保持一致
2020
```
2121

2222
参数说明如下:

docs/deployment/slim/distill/distill.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,7 @@ python tools/train.py \
5858
--save_dir output/deeplabv3p_resnet50
5959
```
6060

61-
After the traing, the mIoU of the teacher model is 91.54% and the trained weights are saved in `output/deeplabv3p_resnet50/best_model/model.pdparams`.
61+
After the training, the mIoU of the teacher model is 91.54% and the trained weights are saved in `output/deeplabv3p_resnet50/best_model/model.pdparams`.
6262

6363
### 2.4 Train the Student Model (Optional)
6464

docs/deployment/slim/prune/prune.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
English | [简体中文](prune_cn.md)
22

3-
# Model Pruning Toturial
3+
# Model Pruning Tutorial
44

55
Many CNN models require huge computing and memory overhead, which seriously hinders the applications under limited resources. Model compression can reduce model parameters or FLOPs, and facilitate the deployment of restricted hardware. Powered by PaddleSlim, PaddleSeg provides model pruning for developers in image segmentation.
66

docs/pr/pr/style_cn.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -324,7 +324,7 @@ class Cityscapes(Dataset):
324324
1. ```__init__```中参数全部显式写出,**不能**包括变长参数比如:```*args, **kwargs```
325325
2. ```super().__init__()```保持空参数;
326326
3. 参数顺序和上述参数顺序一致;
327-
4. 通过在在```__init__```方法中建立 ```self.file_list```,之后就根据其中元素的路径读取对应图片。
327+
4. 通过在```__init__```方法中建立 ```self.file_list```,之后就根据其中元素的路径读取对应图片。
328328

329329
## 3 导出和测试预测模型
330330

docs/whole_process.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -401,7 +401,7 @@ output
401401
| Python | Paddle prediction library | [e.g.](../deploy/python/) |
402402
| C++ | Paddle prediction library | [e.g.](../deploy/cpp/) |
403403
| Mobile | PaddleLite | [e.g.](../deploy/lite/) |
404-
| Serving | HubServing | Comming soon |
404+
| Serving | HubServing | Coming soon |
405405
| Front-end | PaddleJS | [e.g.](../deploy/web/) |
406406

407407
```

paddleseg/models/backbones/resnet_vd.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -297,7 +297,7 @@ def __init__(self,
297297
block] if dilation_dict and block in dilation_dict else 1
298298

299299
# Actually block here is 'stage', and i is 'block' in 'stage'
300-
# At the stage 4, expand the the dilation_rate if given multi_grid
300+
# At the stage 4, expand the dilation_rate if given multi_grid
301301
if block == 3:
302302
dilation_rate = dilation_rate * multi_grid[i]
303303
###############################################################################

paddleseg/models/backbones/top_transformer.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -593,23 +593,23 @@ def init_weight(self):
593593
utils.load_entire_model(self, self.pretrained)
594594

595595
def forward(self, x):
596-
ouputs = self.tpm(x)
597-
out = self.ppa(ouputs)
596+
outputs = self.tpm(x)
597+
out = self.ppa(outputs)
598598
out = self.trans(out)
599599

600600
if self.injection:
601601
xx = out.split(self.feat_channels, axis=1)
602602
results = []
603603
for i in range(len(self.feat_channels)):
604604
if i in self.trans_out_indices:
605-
local_tokens = ouputs[i]
605+
local_tokens = outputs[i]
606606
global_semantics = xx[i]
607607
out_ = self.SIM[i](local_tokens, global_semantics)
608608
results.append(out_)
609609
return results
610610
else:
611-
ouputs.append(out)
612-
return ouputs
611+
outputs.append(out)
612+
return outputs
613613

614614

615615
@manager.BACKBONES.add_component

0 commit comments

Comments
 (0)