-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpenalty_method.py
107 lines (83 loc) · 2.91 KB
/
penalty_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
class AugmentedLagrangian:
def __init__(self, objective, constraints, start_point, optimal, name):
self.f = objective
self.constr_list = constraints
self.mu_list = [1]*len(constraints)
self.start = start_point
self.name = name
self.optimal = optimal
# Only in our case
self.optimal_x = np.array([[2/3], [2/3]])
self.optimal_mu = np.array([[12], [11+1/3], [0]])
self.p_max = 1000
self.curr_p = 2
self.p_alpha = 10
self.penalty = Penalty(2)
def print_multipliers(self):
print("Augmented Lagrangian multipliers are: ", self.mu_list)
def get_most_violated_constraint(self,x):
max_violation = 0
for constr in self.constr_list:
val = max(0, constr.val(x))
if max_violation < val:
max_violation = val
return max_violation
def update_mu(self, x):
'''
Updates Lagrangian multipliers
'''
for idx, mu in enumerate(self.mu_list):
mu_new = self.mu_list[idx] * self.penalty.deriv(self.constr_list[idx].val(x))
self.mu_list[idx] = mu_new
#print("self.mu_list=", self.mu_list)
def get_mu(self):
return self.mu_list
def update_p(self):
if self.curr_p < self.p_max:
self.curr_p = self.curr_p * self.p_alpha
self.penalty = Penalty(min(self.curr_p, self.p_max))
def optimal(self):
return self.optimal
def optimal_x(self):
return self.optimal_x
def optimal_mu(self):
return self.optimal_mu()
def name(self):
return self.name()
def starting_point(self):
return self.start
def val(self, x):
res = self.f.val(x)
for mu, constr in zip(self.mu_list, self.constr_list):
res += mu * self.penalty.val(constr.val(x))
return res
def grad(self, x):
res = self.f.grad(x)
for mu, constr in zip(self.mu_list, self.constr_list):
res += mu * self.penalty.deriv(constr.val(x))*constr.grad(x)
return res
def hess(self, x):
res = self.f.hess(x)
for mu, constr in zip(self.mu_list, self.constr_list):
temp = np.matmul(constr.grad(x), np.transpose(constr.grad(x)))
res += mu * self.penalty.sec_deriv(constr.val(x))*temp
return res
class Penalty:
def __init__(self, p=2):
self.p = p
def val(self, g):
if self.p*g >= -0.5:
return (1 / self.p) * (0.5 * ((self.p*g) ** 2) + self.p*g)
else:
return (1 / self.p) * (-0.25 * (np.log(-2 * self.p*g) - 3 / 8))
def deriv(self, g):
if self.p*g >= -0.5:
return self.p*g + 1
else:
return - (1 / (4*self.p*g))
def sec_deriv(self, g):
if self.p*g >= -0.5:
return self.p
else:
return 1 / (4 * self.p * g**2)