File tree Expand file tree Collapse file tree 1 file changed +39
-0
lines changed Expand file tree Collapse file tree 1 file changed +39
-0
lines changed Original file line number Diff line number Diff line change @@ -274,5 +274,44 @@ \subsection{Substitute the obtained in Q.3 Lagrange multipliers}
274
274
Is the dual optimum achieved at that point? Yes.
275
275
\[ \eta (\lambda _1^*, \lambda _2^*) = 37 \frac {2}{3} \]
276
276
277
+ \newpage
278
+ \section {Code }
279
+ \subsection {Penalty method }
280
+ \subparagraph {Lagrangian } Lets look at example with only one constraint
281
+ \[ L_{p\mu }(x) = f(x) + \mu _i \varphi _{p }(g_{i(x)}) + ... \]
282
+
283
+ \[ \nabla _x L_{p\mu }(x) = \nabla _x f(x) + \mu _i \varphi _{p }^{'} (g_{i(x)}) \nabla _x g_{i(x)} + ... \]
284
+
285
+ \[ \nabla _x^2 L_{p\mu }(x) = \nabla _x^2 f(x) + \mu _i \varphi _{p}^{''} (g_{i(x)}) \nabla _x g_{i(x)}\nabla _x^T g_{i(x)} + \mu _i \varphi _{p}^{'} (g_{i(x)}) \nabla _x^2 g_{i(x)} + ... = \]
286
+
287
+ \[ \nabla _x^2 L_{p\mu }(x) = \nabla _x^2 f(x) + \mu _i \varphi _{p}^{''} (g_{i(x)}) \nabla _x g_{i(x)}\nabla _x^T g_{i(x)} + 0 \]
288
+
289
+ \subparagraph {Penalty Function }
290
+ \[
291
+ \varphi _{p}(g_{(x)}) =\left \{
292
+ \begin {array }{ll}
293
+ \frac {1}{p}(\frac {p^2 g_{(x)}^2}{2} + pg_{(x)}) \ ; \ pg_{(x)} \geq -\frac {1}{2} \\
294
+ \frac {1}{p} [-\frac {1}{4} \log (-2pg_{(x)})-\frac {3}{8}] \ ; \ pg_{(x)} -\frac {1}{2}
295
+ \end {array }
296
+ \right .
297
+ \]
298
+
299
+ \[
300
+ \varphi _{p}^{'}(g_{(x)}) =\left \{
301
+ \begin {array }{ll}
302
+ (pg_{(x)}+1) \ ; \ pg_{(x)} \geq -\frac {1}{2} \\
303
+ -\frac {1}{4pg_{(x)}}\ ; \ pg_{(x)} < -\frac {1}{2}
304
+ \end {array }
305
+ \right .
306
+ \]
307
+
308
+ \[
309
+ \varphi _{p}^{''}(g_{(x)}) =\left \{
310
+ \begin {array }{ll}
311
+ p \ ; \ pg_{(x)} \geq -\frac {1}{2} \\
312
+ \frac {1}{4pg_{(x)}^2}\ ; \ pg_{(x)} < -\frac {1}{2}
313
+ \end {array }
314
+ \right .
315
+ \]
277
316
278
317
\end {document }
You can’t perform that action at this time.
0 commit comments