-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdata.py
233 lines (171 loc) · 6.09 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# data.py
# author: Playinf
# email: [email protected]
import numpy
# lowest-level stream
class textreader:
def __init__(self, name, shuffle=False, readall=False):
if not isinstance(name, (list, tuple)):
name = [name]
stream = [open(item, "r") for item in name]
if shuffle or readall:
texts = [fd.readlines() for fd in stream]
else:
texts = None
if shuffle:
readall = True
if not isinstance(shuffle, bool):
randstate = numpy.random.RandomState(shuffle)
shuffle = randstate.shuffle
else:
shuffle = numpy.random.shuffle
linecnt = min([len(text) for text in texts])
indices = numpy.arange(linecnt)
shuffle(indices)
else:
indices = None
shuffle = False
self.eos = False
self.count = 0
self.names = name
self.texts = texts
self.stream = stream
self.indices = indices
self.shuffle = shuffle
def __iter__(self):
return self
def __next__(self):
return self.next()
def readline(self):
# read directly from memory
if self.texts:
linecnt = min([len(text) for text in self.texts])
# end of file
if self.count == linecnt:
return None
if self.shuffle:
texts = [text[self.indices[self.count]] for text in self.texts]
else:
texts = [text[self.count] for text in self.texts]
else:
# read from file
texts = [fd.readline() for fd in self.stream]
flag = any([line == "" for line in texts])
if flag:
return None
self.count += 1
texts = [text.strip() for text in texts]
return texts
def next(self):
data = self.readline()
if data == None:
self.reset()
raise StopIteration
return data
def reset(self):
self.count = 0
self.eos = False
for fd in self.stream:
fd.seek(0)
if self.shuffle:
linecnt = min([len(text) for text in self.texts])
indices = numpy.arange(linecnt)
self.shuffle(indices)
self.indices = indices
def close(self):
for fd in self.stream:
fd.close()
def get_indices(self):
return self.indices
def set_indices(self, indices):
self.indices = indices
class textiterator:
def __init__(self, reader, size, processor=None, maxlen=None, sort=False):
if not isinstance(size, (list, tuple)) or len(size) != 2:
raise ValueError("size must be format (batch_size, buffer_size)")
if size[0] > size[1]:
raise ValueError("buffer_size must >= batch_size")
if processor and not isinstance(processor, (list, tuple)):
processor = [processor]
if not processor and (maxlen or sort):
raise ValueError("length processor must provided")
if processor and len(processor) != len(reader.stream):
raise ValueError("must provide processor for each stream")
if maxlen and not isinstance(maxlen, (list, tuple)):
maxlen = [maxlen for i in range(len(reader.stream))]
if maxlen and len(maxlen) != len(reader.stream):
raise ValueError("len(maxlen) != len(reader.stream)")
data = [[] for i in range(len(reader.stream))]
self.end = False
self.data = data
self.size = size
self.sort = sort
self.limit = maxlen
self.reader = reader
self.processor = processor
def __iter__(self):
return self
def __next__(self):
return self.next()
def read_data(self):
data_size = len(self.data[0])
batch_size = self.size[0]
buffer_size = self.size[1]
# fill buffer
if batch_size > data_size:
count = buffer_size - data_size
while count:
new_data = self.reader.readline()
# end of file
if not new_data:
break
if self.limit and self.processor:
ndata = len(new_data)
exceed_lim = False
for i in range(ndata):
if not self.limit[i]:
continue
if not self.processor[i](new_data[i]):
exceed_lim = True
break
if self.processor[i](new_data[i]) > self.limit[i]:
exceed_lim = True
break
if exceed_lim:
continue
# add to buffer
for bdata, data in zip(self.data, new_data):
bdata.append(data)
count -= 1
# sort batch data
if self.sort:
lens = []
for getlen, data in zip(self.processor, self.data):
lens.append(map(getlen, data))
lens = numpy.asarray(lens)
order = numpy.argsort(lens.max(axis=0))
newdata = []
for data in self.data:
newdata.append([data[ind] for ind in order])
self.data = newdata
new_data_size = len(self.data[0])
if new_data_size == 0:
return None
elif batch_size > new_data_size:
data = self.data
self.data = [[] for i in range(len(self.reader.stream))]
return data
else:
data = [item[:batch_size] for item in self.data]
self.data = [item[batch_size:] for item in self.data]
return data
def next(self):
data = self.read_data()
if data == None:
self.reset()
raise StopIteration
return data
def reset(self):
self.reader.reset()
def close(self):
self.reader.close()