-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrYOLO_particlepicker.py
122 lines (104 loc) · 4.64 KB
/
crYOLO_particlepicker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse
from cryosparc import star
from cryosparc.dataset import Dataset
from cryosparc.tools import CryoSPARC
from dotenv import dotenv_values
# Parse command line arguments
parser = argparse.ArgumentParser(description="Run crYOLO particle picking on a set of micrographs within CryoSPARC.")
parser.add_argument("project", type=str, help="Name of project to run the job in")
parser.add_argument("workspace", type=str, help="Name of workspace to run the job in")
parser.add_argument("curate_exposures_job_id", type=str, help="ID of job that curated the micrographs")
parser.add_argument("box_size", type=int, help="Box size for particle picking (in Angstroms)")
parser.add_argument("model_path", type=str, help="Path to crYOLO model")
parser.add_argument(
"--title",
type=str,
default="crYOLO Picks",
help='Title for job (default: "crYOLO Picks")',
)
parser.add_argument("--lowpass", type=float, default=0.1, help="Low pass filter cutoff (default: 0.1)")
parser.add_argument(
"--threshold",
type=float,
default=0.05,
help="Threshold for particle picking (default: 0.05)",
)
parser.add_argument("--predict_batch", type=int, default=3, help="prediction batch (default: 3)")
parser.add_argument("--baseport", type=str, default=39000, help="Cryosparc baseport (default: 39000)")
args = parser.parse_args()
# Load login credentials from .env file
env_vars = dotenv_values(".env")
license = env_vars["CRYOSPARC_LICENSE_ID"]
host = env_vars["CRYOSPARC_HOST"]
email = env_vars["CRYOSPARC_EMAIL"]
password = env_vars["CRYOSPARC_PASSWORD"]
# Connect to CryoSPARC instance
cs = CryoSPARC(license=license, host=host, base_port=args.baseport, email=email, password=password)
# Find project and create job
project = cs.find_project(args.project)
job = project.create_external_job(args.workspace, title=args.title)
curate_job = project.find_job(args.curate_exposures_job_id)
# Connect micrographs to the job and add output
job.connect(
"all_micrographs",
args.curate_exposures_job_id,
"exposures_accepted",
slots=["micrograph_blob"],
)
job.add_output("particle", "predicted_particles", slots=["location", "pick_stats"])
# Wait for all previous jobs to finish
job.start(status="waiting")
job.log(f"Waiting for job {args.curate_exposures_job_id} to finish.")
curate_job.wait_for_status(status="completed")
job.stop()
# Start the job and set its status to "running"
job.log(f"Starting job - {job.uid}")
job.start(status="running")
# Create directory and symlink the micrographs
job.mkdir("full_data")
all_micrographs = job.load_input("all_micrographs", ["micrograph_blob"])
for mic in all_micrographs.rows():
source = mic["micrograph_blob/path"]
target = job.uid + "/full_data/" + source.split("/")[-1]
project.symlink(source, target)
# Configure crYOLO
job.subprocess(
f"cryolo_gui.py config config_cryolo.json {args.box_size} --filter LOWPASS --low_pass_cutoff {args.lowpass}".split(" "),
cwd=job.dir(),
mute=True,
checkpoint=True,
)
# Run particle picking job
job.subprocess(
f"cryolo_predict.py -c config_cryolo.json -w {args.model_path} -i full_data -g 0 -o boxfiles -t {args.threshold} -pbs {args.predict_batch}".split(" "),
cwd=job.dir(),
mute=True,
checkpoint=True,
)
# Fill CrYOLO threshold as NCC and power score so that the results may be inspected and filtered with an Inspect Picks job.
output_star_folder = "STAR"
all_predicted = []
starfile_path = "boxfiles/CRYOSPARC/cryosparc.star"
locations = star.read(job.dir() / starfile_path)[""]
for mic in all_micrographs.rows():
micrograph_path = mic["micrograph_blob/path"]
micrograph_name = micrograph_path.split("/")[-1]
height, width = mic["micrograph_blob/shape"]
center_x = locations[locations["rlnMicrographName"] == micrograph_name]["rlnCoordinateX"] / width
center_y = locations[locations["rlnMicrographName"] == micrograph_name]["rlnCoordinateY"] / height
threshold = locations[locations["rlnMicrographName"] == micrograph_name]["rlnAutopickFigureOfMerit"]
predicted = job.alloc_output(
"predicted_particles",
len(locations[locations["rlnMicrographName"] == micrograph_name]),
)
predicted["location/micrograph_uid"] = mic["uid"]
predicted["location/micrograph_path"] = mic["micrograph_blob/path"]
predicted["location/micrograph_shape"] = mic["micrograph_blob/shape"]
predicted["location/center_x_frac"] = center_x
predicted["location/center_y_frac"] = center_y
predicted["pick_stats/ncc_score"] = threshold
predicted["pick_stats/power"] = threshold
all_predicted.append(predicted)
# Save particle locations and stop job
job.save_output("predicted_particles", Dataset.append(*all_predicted))
job.stop()