Skip to content

Latest commit

 

History

History
107 lines (81 loc) · 3.79 KB

Tech-Stack.md

File metadata and controls

107 lines (81 loc) · 3.79 KB

1.Frontend (User Interface)

The frontend handles user interaction, file uploads, and displaying visualizations.

Frameworks/Libraries:

  • React.js (popular, modular, and fast for interactive UIs).
  • Redux/Context API (for state management).

Charting Libraries:

  • Plotly.js or Chart.js for responsive, interactive charts.
  • D3.js for advanced, customizable visualizations.
  • Tailwind CSS or Material-UI for modern, responsive design.

Tools:

  • Axios or Fetch API for HTTP requests.
  • Webpack or Vite for bundling.
  • ESLint and Prettier for code quality.

2.Backend (Server-Side Logic)

The backend handles file uploads, processing, and data preparation.

Framework:

  • Python Django (robust, scalable, and has excellent support for APIs).
  • Flask (lightweight, good for smaller applications).
  • Node.js (if JavaScript is preferred for a unified stack).

Libraries:

  • Pandas: For processing and cleaning CSV data.
  • NumPy: For numerical calculations.
  • Matplotlib/Seaborn: For generating non-interactive visualizations.
  • Plotly (Python): For backend-driven interactive plots.

Database:

  • PostgreSQL or MySQL: For storing user sessions, preferences, and cached data.
  • Redis: For caching frequently accessed datasets or user-generated dashboards.

API Frameworks:

  • Django REST Framework (DRF) or Flask-RESTful for building REST APIs.

3.APIs

File Handling:

  • AWS S3 API: For secure file storage and retrieval.
  • Alternatives: Google Cloud Storage or Azure Blob Storage.

Visualization APIs:

  • Plotly API: If you want server-side control over interactive charts.
  • Google Charts API: Lightweight option for simple visualizations.

Authentication:

  • OAuth 2.0: For social logins (Google, GitHub, etc.).
  • Libraries: Django-Allauth, Flask-OAuthlib, or Passport.js (Node.js).

Data Analysis APIs (Optional):

  • NumPy or Pandas REST wrappers: To expose backend processing logic for dynamic requests.

4.Data Storage and Management

Database Choices:

  • PostgreSQL: Ideal for structured data and large-scale operations.
  • MongoDB: For unstructured or semi-structured data.
  • SQLite: For development or lightweight use cases.

Cloud Storage Services:

  • AWS S3 or Google Cloud Storage for file storage.
  • Amazon RDS for database hosting.

Data Pipeline Tools:

  • Apache Kafka or RabbitMQ: For handling real-time data pipelines (if needed).

5.Deployment and Hosting

Platforms:

  • AWS (EC2 for backend, S3 for file storage, CloudFront for CDN).
  • Google Cloud Platform or Microsoft Azure (alternatives for hosting).
  • Heroku: Quick deployment during the MVP stage.

Containerization:

  • Docker: For packaging the application.
  • Kubernetes: For scaling microservices.

CI/CD Tools:

  • GitHub Actions: For automated testing and deployment.
  • Jenkins or CircleCI: For larger teams.

6.Other Essential Tools

User Analytics:

  • Google Analytics or Hotjar: For monitoring user behavior.

Error Monitoring:

  • Sentry or Datadog: For tracking application errors.

Testing Frameworks:

  • Pytest: For backend unit testing.
  • Jest or Cypress: For frontend and end-to-end testing.

Tech Stack Summary

Category Tool/Technology
Frontend React.js, Chart.js, Plotly.js, Tailwind CSS
Backend Python (Django/Flask), Node.js (alternative)
Visualization Plotly, D3.js, Matplotlib, Seaborn
Database PostgreSQL, Redis (caching), AWS S3 (storage)
APIs Plotly API, AWS S3 API, Google Charts API
Deployment AWS, Google Cloud, Heroku, Docker
Testing & Analytics Pytest, Jest, Google Analytics, Sentry