-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
24 lines (23 loc) · 957 Bytes
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import pandas as pd
import numpy as np
import pickle
popular_df=pickle.load(open('popular_df.pkl','rb'))
vectorizer=pickle.load(open('vectorizer.pkl','rb'))
similar_dict=pickle.load(open('similar_channels_data.pkl','rb'))
def recommend(channel_name):
# find the index of the channel name
indx=np.where(popular_df['channel_name']==channel_name)[0][0]
# return similar_dict[indx]['similar_channels_indx'],similar_dict[indx]['similarity_score']
recommended_channels=[]
scores=similar_dict[indx]['similarity_score']
for channel in similar_dict[indx]['similar_channels_indx']:
# print(channel)
data=[]
name=popular_df.iloc[channel]['channel_name']
avatar=popular_df.iloc[channel]['avatar']
link=popular_df.iloc[channel]['channel_link']
data.append(name)
data.append(avatar)
data.append(link)
recommended_channels.append(data)
return recommended_channels,scores