-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
114 lines (110 loc) · 3.17 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from DimRed import *
from sklearn.decomposition import (
PCA,
IncrementalPCA,
KernelPCA,
TruncatedSVD,
FastICA,
MiniBatchDictionaryLearning,
SparsePCA,
)
from sklearn.manifold import Isomap, LocallyLinearEmbedding
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.random_projection import GaussianRandomProjection, SparseRandomProjection
from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis
def config():
param_grids = [
{"n_components": [1, 2, 3]},
{"n_components": [1, 2, 3]},
{
"kernel": ["rbf"],
"n_components": [1, 2, 3],
"gamma": [None],
"fit_inverse_transform": [True],
"n_jobs": [-1],
},
{
"n_components": [1, 2, 3],
"alpha": [0.001, 0.01],
"n_jobs": [-1],
},
{
"n_components": [1, 2, 3],
"algorithm": ["randomized"],
"n_iter": [1, 2, 4, 5],
},
{"n_components": [1, 2, 3], "eps": [0.125, 0.75, 1]},
{"n_components": [1, 2, 3]},
{"n_components": [1, 2, 3]},
{
"n_components": [1, 2, 3],
"density": ["auto"],
"eps": [
0.5,
],
"dense_output": [True, False],
},
{"n_components": [2, 3], "n_jobs": [-1], "n_neighbors": [1, 5]},
{
"n_components": [1, 2, 3],
"batch_size": [100, 200],
"alpha": [
0.0001,
0.001,
0.01,
],
"n_iter": [
2,
3,
4,
],
},
{
"n_components": [1, 2, 3],
"algorithm": ["parallel", "deflation"],
"whiten": [True, False],
"max_iter": [50, 100],
},
{
"n_components": [1, 2, 3],
"n_neighbors": [10],
"method": ["modified"],
"n_jobs": [4],
},
]
reduction_methods = [
PCA,
IncrementalPCA,
KernelPCA,
SparsePCA,
TruncatedSVD,
GaussianRandomProjection,
LinearDiscriminantAnalysis,
NeighborhoodComponentsAnalysis,
SparseRandomProjection,
Isomap,
MiniBatchDictionaryLearning,
FastICA,
LocallyLinearEmbedding,
]
standard_pipeline = Pipeline([("StandardScalar", StandardScaler())])
return param_grids, standard_pipeline, reduction_methods
X_train, X_test, y_train, y_test = load_dataset()
param_grids, standard_pipeline, reduction_methods = config()
all_possible_variations = Variations(
param_grids=param_grids,
reduction_methods=reduction_methods,
standard_pipeline=standard_pipeline,
analysis_instance=Analysis(X_train, y_train),
).produce_variations()
all_pipeline_performance, best_performances = Evaluation(
_data={
"X_train": X_train,
"X_test": X_test,
"y_train": y_train,
"y_test": y_test,
},
all_possible_variations=all_possible_variations,
labels=np.unique(y_train),
).evaluate()
pprint(best_performances)