-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_async.py
50 lines (40 loc) · 1.01 KB
/
main_async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import time
import torch
import tqdm
from dataloaderAsync import DataLoader
class Dataset():
def __init__(self):
super().__init__()
def __len__(self):
return 1000
def __getitem__(self, index):
return torch.tensor(3)
def nnet(x):
time.sleep(0.033)
return x + 0.1
def reconstruction(x):
time.sleep(0.033)
return x + 0.01
def render(x):
time.sleep(0.033)
return x + 0.001
if __name__ == '__main__':
dataset = Dataset()
loader = DataLoader(
dataset,
batch_size=1,
num_workers=4,
pin_memory=True,
processors=[
lambda x: x.cuda(),
lambda x: nnet(x), # 33 ms
lambda x: reconstruction(x), # 33 ms
lambda x: render(x), # 33 ms
])
tic = time.time()
ncount = 0
for data in tqdm.tqdm(loader):
print (data.shape, data.is_cuda, data.dtype, data)
ncount+=1
toc = time.time()
print (f"average runtime is {(toc-tic)/ncount} s") # total 36 ms