Skip to content

Commit 04d19f1

Browse files
authored
beginner_source/nlp/README.txt λ²ˆμ—­ (#956)
1 parent 1ee7ca8 commit 04d19f1

File tree

1 file changed

+17
-28
lines changed

1 file changed

+17
-28
lines changed

β€Žbeginner_source/nlp/README.txt

+17-28
Original file line numberDiff line numberDiff line change
@@ -1,44 +1,33 @@
1-
Deep Learning for NLP with Pytorch
1+
PyTorchλ₯Ό ν™œμš©ν•œ μžμ—°μ–΄ 처리λ₯Ό μœ„ν•œ λ”₯λŸ¬λ‹
22
----------------------------------
3+
**λ²ˆμ—­**: `μ΅œκ°‘μ£Ό <http://github.com/Choigapju>`_
34

4-
These tutorials will walk you through the key ideas of deep learning
5-
programming using Pytorch. Many of the concepts (such as the computation
6-
graph abstraction and autograd) are not unique to Pytorch and are
7-
relevant to any deep learning toolkit out there.
8-
9-
They are focused specifically on NLP for people who have never written
10-
code in any deep learning framework (e.g, TensorFlow,Theano, Keras, DyNet).
11-
The tutorials assumes working knowledge of core NLP problems: part-of-speech
12-
tagging, language modeling, etc. It also assumes familiarity with neural
13-
networks at the level of an intro AI class (such as one from the Russel and
14-
Norvig book). Usually, these courses cover the basic backpropagation algorithm
15-
on feed-forward neural networks, and make the point that they are chains of
16-
compositions of linearities and non-linearities. This tutorial aims to get
17-
you started writing deep learning code, given you have this prerequisite
18-
knowledge.
19-
20-
Note these tutorials are about *models*, not data. For all of the models,
21-
a few test examples are created with small dimensionality so you can see how
22-
the weights change as it trains. If you have some real data you want to
23-
try, you should be able to rip out any of the models from this notebook
24-
and use them on it.
5+
이 νŠœν† λ¦¬μ–Ό μ‹œλ¦¬μ¦ˆλŠ” PyTorchλ₯Ό ν™œμš©ν•œ λ”₯λŸ¬λ‹ ν”„λ‘œκ·Έλž˜λ°μ˜ 핡심 κ°œλ…λ“€μ„ λ‹¨κ³„λ³„λ‘œ μ•ˆλ‚΄ν•©λ‹ˆλ‹€.
6+
μ—¬κΈ°μ„œ λ‹€λ£¨λŠ” λ§Žμ€ κ°œλ…λ“€(예λ₯Ό λ“€μ–΄, 계산 κ·Έλž˜ν”„ 좔상화와 μžλ™ λ―ΈλΆ„)은 PyTorchμ—λ§Œ κ΅­ν•œλœ 것이 μ•„λ‹ˆλΌ ν˜„μ‘΄ν•˜λŠ” λͺ¨λ“  λ”₯λŸ¬λ‹ 도ꡬ에 κ³΅ν†΅μ μœΌλ‘œ μ μš©λ˜λŠ” μ›λ¦¬μž…λ‹ˆλ‹€.
7+
8+
이 νŠœν† λ¦¬μ–Όμ€ 특히 λ”₯λŸ¬λ‹ ν”„λ ˆμž„μ›Œν¬(예: TensorFlow, Theano, Keras, DyNet λ“±)둜 μ½”λ“œλ₯Ό μž‘μ„±ν•΄ λ³Έ κ²½ν—˜μ΄ μ „ν˜€ μ—†λŠ” 뢄듀을 μœ„ν•œ μžμ—°μ–΄ μ²˜λ¦¬μ— μ΄ˆμ μ„ λ§žμΆ”κ³  μžˆμŠ΅λ‹ˆλ‹€.
9+
ν’ˆμ‚¬ νƒœκΉ…, μ–Έμ–΄ λͺ¨λΈλ§ λ“± 핡심 μžμ—°μ–΄ 처리 λ¬Έμ œμ— λŒ€ν•œ 기본적인 이해λ₯Ό μ „μ œλ‘œ ν•©λ‹ˆλ‹€. λ˜ν•œ μž…λ¬Έ μˆ˜μ€€μ˜ 인곡지λŠ₯ κ°•μ’Œ(예: Russellκ³Ό Norvig의 κ΅μž¬μ—μ„œ λ‹€λ£¨λŠ” μˆ˜μ€€)μ—μ„œ ν•™μŠ΅ν•˜λŠ” μ •λ„μ˜ 신경망 지식을 κ°–μΆ”κ³  μžˆλ‹€κ³  κ°€μ •ν•©λ‹ˆλ‹€.
10+
일반적으둜 이런 κ°•μ’Œλ“€μ€ μˆœμ „νŒŒ μ‹ κ²½λ§μ˜ 기본적인 μ—­μ „νŒŒ μ•Œκ³ λ¦¬μ¦˜μ„ 닀루며, 신경망이 μ„ ν˜• λ³€ν™˜κ³Ό λΉ„μ„ ν˜• ν™œμ„±ν™” ν•¨μˆ˜μ˜ 연쇄 κ΅¬μ„±μ΄λΌλŠ” 점을 κ°•μ‘°ν•©λ‹ˆλ‹€. λ³Έ νŠœν† λ¦¬μ–Όμ˜ 주된 λͺ©ν‘œλŠ” μ΄λŸ¬ν•œ μ„ μˆ˜ 지식을 λ°”νƒ•μœΌλ‘œ μ—¬λŸ¬λΆ„μ΄ μ‹€μ œλ‘œ λ”₯λŸ¬λ‹ μ½”λ“œλ₯Ό μž‘μ„±ν•˜κΈ° μ‹œμž‘ν•  수 μžˆλ„λ‘ μ•ˆλ‚΄ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
11+
12+
μ°Έκ³ λ“œλ¦΄ 점은 이 νŠœν† λ¦¬μ–Όμ€ 데이터가 μ•„λ‹Œ *λͺ¨λΈ*에 κ΄€ν•œ κ²ƒμž…λ‹ˆλ‹€. λͺ¨λ“  λͺ¨λΈμ— λŒ€ν•΄,
13+
ν•™μŠ΅ κ³Όμ •μ—μ„œ κ°€μ€‘μΉ˜κ°€ μ–΄λ–»κ²Œ λ³€ν™”ν•˜λŠ”μ§€ 확인할 수 μžˆλ„λ‘ μž‘μ€ μ°¨μ›μ˜ ν…ŒμŠ€νŠΈ μ˜ˆμ œλ“€μ„ λͺ‡ κ°€μ§€ μƒμ„±ν–ˆμŠ΅λ‹ˆλ‹€. μ‹€μ œ λ°μ΄ν„°λ‘œ μ‹œλ„ν•΄λ³΄κ³  μ‹ΆμœΌμ‹œλ‹€λ©΄, 이 λ…ΈνŠΈλΆμ˜ λͺ¨λ“  λͺ¨λΈμ„ κ·ΈλŒ€λ‘œ κ°€μ Έκ°€μ„œ μ—¬λŸ¬λΆ„μ˜ 데이터에 μ μš©ν•΄λ³΄μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€.
2514

2615
1. pytorch_tutorial.py
27-
Introduction to PyTorch
16+
νŒŒμ΄ν† μΉ˜ μ†Œκ°œ
2817
https://tutorials.pytorch.kr/beginner/nlp/pytorch_tutorial.html
2918

3019
2. deep_learning_tutorial.py
31-
Deep Learning with PyTorch
20+
λ”₯λŸ¬λ‹ μ†Œκ°œ
3221
https://tutorials.pytorch.kr/beginner/nlp/deep_learning_tutorial.html
3322

3423
3. word_embeddings_tutorial.py
35-
Word Embeddings: Encoding Lexical Semantics
24+
단어 μž„λ² λ”© μ†Œκ°œ
3625
https://tutorials.pytorch.kr/beginner/nlp/word_embeddings_tutorial.html
3726

3827
4. sequence_models_tutorial.py
39-
Sequence Models and Long Short-Term Memory Networks
28+
순차 λͺ¨λΈ μ†Œκ°œ
4029
https://tutorials.pytorch.kr/beginner/nlp/sequence_models_tutorial.html
4130

4231
5. advanced_tutorial.py
43-
Advanced: Making Dynamic Decisions and the Bi-LSTM CRF
44-
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html
32+
κ³ κΈ‰ μ†Œκ°œ
33+
https://tutorials.pytorch.kr/beginner/nlp/advanced_tutorial.html

0 commit comments

Comments
Β (0)