-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathzrmaker_tracking.py
138 lines (115 loc) · 3 KB
/
zrmaker_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import csv
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import matplotlib, time
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.animation as animation
from sklearn.cluster import DBSCAN
# Open File
with open('data/sample_walk_1.txt') as f:
lines = f.readlines()
frame_num_count = -1
frame_num = []
x = []
y = []
z = []
velocity = []
intensity = []
wordlist = []
for x1 in lines:
for word in x1.split():
wordlist.append(word)
length1 = len(wordlist)
for i in range(0,length1):
if wordlist[i] == "point_id:" and wordlist[i+1] == "0":
frame_num_count += 1
if wordlist[i] == "point_id:":
frame_num.append(frame_num_count)
if wordlist[i] == "x:":
x.append(wordlist[i+1])
if wordlist[i] == "y:":
y.append(wordlist[i+1])
if wordlist[i] == "z:":
z.append(wordlist[i+1])
if wordlist[i] == "velocity:":
velocity.append(wordlist[i+1])
if wordlist[i] == "intensity:":
intensity.append(wordlist[i+1])
final = np.zeros([len(frame_num), 6])
i = 0
while i < len(frame_num):
final[i,0] = int(frame_num[i])
final[i,1] = x[i]
final[i,2] = y[i]
final[i,3] = z[i]
final[i,4] = velocity[i]
final[i,5] = intensity[i]
i = i + 1
np.savetxt("read_output.csv", final, delimiter=",")
# x_max = max(final[:,1])
# y_max = max(final[:,2])
# z_max = max(final[:,3])
# x_min = min(final[:,1])
# y_min = min(final[:,2])
# z_min = min(final[:,3])
x_max = 4.5
y_max = 2
z_max = 1
x_min = 0.5
y_min = -1
z_min = -1.5
number_of_frames = len(set(frame_num))
max_frame = max(final[:,0])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
def animate(i):
x = []
y = []
z = []
cloud = []
result = []
db_clusters_x = []
db_clusters_y = []
for index in range(len(frame_num)):
if final[index, 0] == i:
x.append(final[index, 1])
y.append(final[index, 2])
z.append(final[index, 3])
for i1 in range(len(x)):
result.append( [x[i1], y[i1]] )
clustering = DBSCAN(eps=0.1, min_samples=5).fit(result)
clusters = clustering.labels_
for i2 in range(len(result)):
for i3 in range(len(clusters)):
if clusters[i3] == 0:
db_clusters_x.append(x[i3])
db_clusters_y.append(y[i3])
border_x_max = max(db_clusters_x)
border_y_max = max(db_clusters_y)
border_x_min = min(db_clusters_x)
border_y_min = min(db_clusters_y)
border_x = [border_x_max, border_x_max, border_x_min, border_x_min]
border_y = [border_y_max, border_y_min, border_y_max, border_y_min]
ax.clear()
ax.set_xlim3d(x_min, x_max)
ax.set_ylim3d(y_min, y_max)
ax.set_zlim3d(z_min, z_max)
ax.scatter(x, y, z, c='r', marker='o')
ax.plot(border_x, border_y)
if i == max_frame:
plt.close('all')
ani = animation.FuncAnimation(fig, animate, interval=1)
plt.show()
x = np.asarray(x)
y = np.asarray(y)
z = np.asarray(z)
frame_num = np.asarray(frame_num)
velocity = np.asarray(velocity)
intensity = np.asarray(intensity)
x = x.astype(np.float)
y = y.astype(np.float)
z = z.astype(np.float)
velocity = velocity.astype(np.float)
intensity = intensity.astype(np.float)
frame_num = frame_num.astype(np.int)