@@ -89,7 +89,8 @@ function _funeval(c, bs::BasisMatrix{Tensor}, order::AbstractMatrix{Int}) # fun
89
89
# 99
90
90
nx = prod ([size (bs. vals[1 , j], 1 ) for j= 1 : d])
91
91
92
- f = Array {eltype(c),3} (nx, size (c, 2 ), kk) # 100
92
+ _T = promote_type (eltype (c), eltype (bs))
93
+ f = Array {_T,3} (nx, size (c, 2 ), kk) # 100
93
94
94
95
for i= 1 : kk
95
96
f[:, :, i] = ckronx (bs. vals, c, order[i, :]) # 102
@@ -102,7 +103,8 @@ function _funeval(c, bs::BasisMatrix{Direct}, order::AbstractMatrix{Int}) # fun
102
103
# 114 reverse the order of evaluation: B(d)xB(d-1)x...xB(1)
103
104
order = flipdim (order .+ (size (bs. vals, 1 )* (0 : d- 1 )' - bs. order+ 1 ), 2 )
104
105
105
- f = Array {eltype(c),3} (size (bs. vals[1 ], 1 ), size (c, 2 ), kk) # 116
106
+ _T = promote_type (eltype (c), eltype (bs))
107
+ f = Array {_T,3} (size (bs. vals[1 ], 1 ), size (c, 2 ), kk) # 116
106
108
107
109
for i in 1 : kk
108
110
f[:, :, i] = cdprodx (bs. vals, c, order[i, :]) # 118
113
115
function _funeval (c, bs:: BasisMatrix{Expanded} , order:: AbstractMatrix{Int} ) # funeval3
114
116
nx = size (bs. vals[1 ], 1 )
115
117
kk = size (order, 1 )
116
- f = Array {promote_type(eltype(c),eltype(bs.vals[1])),3} (nx, size (c, 2 ), kk)
118
+
119
+ _T = promote_type (eltype (c), eltype (bs))
120
+ f = Array {_T,3} (nx, size (c, 2 ), kk)
117
121
for i= 1 : kk
118
122
this_order = order[i, :]
119
123
ind = findfirst (x-> bs. order[x, :] == this_order, 1 : kk)
0 commit comments