@@ -580,47 +580,47 @@ Here goes:
580
580
$|\theta^1_h - \theta^1_l|$ is large:
581
581
* Compute agent 1’s valuation of the equity claim with a
582
582
fixed-point iteration:
583
-
583
+
584
584
$q_1 = \beta \int \frac{u^\prime(c^1_1(\epsilon))}{u^\prime(c^1_0)} d^e(k,b;\epsilon) g(\epsilon) \ d\epsilon$
585
-
585
+
586
586
where
587
-
587
+
588
588
$c^1_1(\epsilon) = w^1_1(\epsilon) + \theta^1 d^e(k,b;\epsilon)$
589
-
589
+
590
590
and
591
-
591
+
592
592
$c^1_0 = w^1_0 + \theta^1_0V - q_1\theta^1$
593
593
* Compute agent 2’s valuation of the bond claim with a
594
594
fixed-point iteration:
595
-
595
+
596
596
$p = \beta \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} d^b(k,b;\epsilon) g(\epsilon) \ d\epsilon$
597
-
597
+
598
598
where
599
-
599
+
600
600
$c^2_1(\epsilon) = w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b$
601
-
601
+
602
602
and
603
-
603
+
604
604
$c^2_0 = w^2_0 + \theta^2_0 V - q_1 \theta^2 - pb$
605
605
* Compute agent 2’s valuation of the equity claim with a
606
606
fixed-point iteration:
607
-
607
+
608
608
$q_2 = \beta \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} d^e(k,b;\epsilon) g(\epsilon) \ d\epsilon$
609
-
609
+
610
610
where
611
-
611
+
612
612
$c^2_1(\epsilon) = w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b$
613
-
613
+
614
614
and
615
-
615
+
616
616
$c^2_0 = w^2_0 + \theta^2_0 V - q_2 \theta^2 - pb$
617
617
* If $q_1 > q_2$, Set $\theta_l = \theta^1$;
618
618
otherwise, set $\theta_h = \theta^1$.
619
619
* Repeat steps 6Aa through 6Ad until
620
620
$|\theta^1_h - \theta^1_l|$ is small.
621
621
1 . Set bond price as $p$ and equity price as $q = \max(q_1,q_2)$.
622
622
1 . Compute optimal choices of consumption:
623
-
623
+
624
624
$$
625
625
\begin{aligned}
626
626
c^1_0 &= w^1_0 + \theta^1_0V - q\theta^1 \\
@@ -629,29 +629,29 @@ Here goes:
629
629
c^2_1(\epsilon) &= w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b
630
630
\end{aligned}
631
631
$$
632
-
632
+
633
633
1 . (Here we confess to abusing notation again, but now in a different
634
634
way. In step 7, we interpret frozen $c^i$s as Big
635
635
$C^i$. We do this to solve the firm’s problem.) Fixing the
636
636
values of $c^i_0$ and $c^i_1(\epsilon)$, compute optimal
637
637
choices of capital $k$ and debt level $b$ using the
638
638
firm’s first order necessary conditions.
639
639
1 . Compute deviations from the firm’s FONC for capital $k$ as:
640
-
640
+
641
641
$kfoc = \beta \alpha A k^{\alpha - 1} \left( \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} e^\epsilon g(\epsilon) \ d\epsilon \right) - 1$
642
642
- If $kfoc > 0$, Set $k_l = k$; otherwise, set
643
643
$k_h = k$.
644
644
- Repeat steps 4 through 7A until $|k_h-k_l|$ is small.
645
645
1 . Compute deviations from the firm’s FONC for debt level $b$ as:
646
-
646
+
647
647
$bfoc = \beta \left[ \int_ {\epsilon^* }^\infty \left( \frac{u^\prime(c^1_1(\epsilon))}{u^\prime(c^1_0)} \right) g(\epsilon) \ d\epsilon - \int_ {\epsilon^* }^\infty \left( \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} \right) g(\epsilon) \ d\epsilon \right] $
648
648
- If $bfoc > 0$, Set $b_h = b$; otherwise, set
649
649
$b_l = b$.
650
650
- Repeat steps 3 through 7B until $|b_h-b_l|$ is small.
651
651
1 . Given prices $q$ and $p$ from step 6, and the firm
652
652
choices of $k$ and $b$ from step 7, compute the synthetic
653
653
firm value:
654
-
654
+
655
655
$V_x = -k + q + pb$
656
656
- If $V_x > V$, then set $V_l = V$; otherwise, set
657
657
$V_h = V$.
@@ -704,12 +704,9 @@ Parameters include:
704
704
- bound: Bound for truncated normal distribution. Default value is 3.
705
705
706
706
``` {code-cell} ipython
707
- import pandas as pd
708
707
import numpy as np
709
- from scipy.stats import norm
710
708
from scipy.stats import truncnorm
711
709
from scipy.integrate import quad
712
- from scipy.optimize import bisect
713
710
from numba import njit
714
711
from interpolation import interp
715
712
```
@@ -1946,4 +1943,3 @@ Agents of type 2 value bonds more highly (they want more hedging).
1946
1943
1947
1944
Taken together with our earlier plot of equity holdings, these graphs confirm our earlier conjecture that while both type
1948
1945
of agents hold equities, only agents of type 2 holds bonds.
1949
-
0 commit comments