@@ -580,47 +580,47 @@ Here goes:
580580 $|\theta^1_h - \theta^1_l|$ is large:
581581 * Compute agent 1’s valuation of the equity claim with a
582582 fixed-point iteration:
583-
583+
584584 $q_1 = \beta \int \frac{u^\prime(c^1_1(\epsilon))}{u^\prime(c^1_0)} d^e(k,b;\epsilon) g(\epsilon) \ d\epsilon$
585-
585+
586586 where
587-
587+
588588 $c^1_1(\epsilon) = w^1_1(\epsilon) + \theta^1 d^e(k,b;\epsilon)$
589-
589+
590590 and
591-
591+
592592 $c^1_0 = w^1_0 + \theta^1_0V - q_1\theta^1$
593593 * Compute agent 2’s valuation of the bond claim with a
594594 fixed-point iteration:
595-
595+
596596 $p = \beta \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} d^b(k,b;\epsilon) g(\epsilon) \ d\epsilon$
597-
597+
598598 where
599-
599+
600600 $c^2_1(\epsilon) = w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b$
601-
601+
602602 and
603-
603+
604604 $c^2_0 = w^2_0 + \theta^2_0 V - q_1 \theta^2 - pb$
605605 * Compute agent 2’s valuation of the equity claim with a
606606 fixed-point iteration:
607-
607+
608608 $q_2 = \beta \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} d^e(k,b;\epsilon) g(\epsilon) \ d\epsilon$
609-
609+
610610 where
611-
611+
612612 $c^2_1(\epsilon) = w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b$
613-
613+
614614 and
615-
615+
616616 $c^2_0 = w^2_0 + \theta^2_0 V - q_2 \theta^2 - pb$
617617 * If $q_1 > q_2$, Set $\theta_l = \theta^1$;
618618 otherwise, set $\theta_h = \theta^1$.
619619 * Repeat steps 6Aa through 6Ad until
620620 $|\theta^1_h - \theta^1_l|$ is small.
6216211 . Set bond price as $p$ and equity price as $q = \max(q_1,q_2)$.
6226221 . Compute optimal choices of consumption:
623-
623+
624624 $$
625625 \begin{aligned}
626626 c^1_0 &= w^1_0 + \theta^1_0V - q\theta^1 \\
@@ -629,29 +629,29 @@ Here goes:
629629 c^2_1(\epsilon) &= w^2_1(\epsilon) + \theta^2 d^e(k,b;\epsilon) + b
630630 \end{aligned}
631631 $$
632-
632+
6336331 . (Here we confess to abusing notation again, but now in a different
634634 way. In step 7, we interpret frozen $c^i$s as Big
635635 $C^i$. We do this to solve the firm’s problem.) Fixing the
636636 values of $c^i_0$ and $c^i_1(\epsilon)$, compute optimal
637637 choices of capital $k$ and debt level $b$ using the
638638 firm’s first order necessary conditions.
6396391 . Compute deviations from the firm’s FONC for capital $k$ as:
640-
640+
641641 $kfoc = \beta \alpha A k^{\alpha - 1} \left( \int \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} e^\epsilon g(\epsilon) \ d\epsilon \right) - 1$
642642 - If $kfoc > 0$, Set $k_l = k$; otherwise, set
643643 $k_h = k$.
644644 - Repeat steps 4 through 7A until $|k_h-k_l|$ is small.
6456451 . Compute deviations from the firm’s FONC for debt level $b$ as:
646-
646+
647647 $bfoc = \beta \left[ \int_ {\epsilon^* }^\infty \left( \frac{u^\prime(c^1_1(\epsilon))}{u^\prime(c^1_0)} \right) g(\epsilon) \ d\epsilon - \int_ {\epsilon^* }^\infty \left( \frac{u^\prime(c^2_1(\epsilon))}{u^\prime(c^2_0)} \right) g(\epsilon) \ d\epsilon \right] $
648648 - If $bfoc > 0$, Set $b_h = b$; otherwise, set
649649 $b_l = b$.
650650 - Repeat steps 3 through 7B until $|b_h-b_l|$ is small.
6516511 . Given prices $q$ and $p$ from step 6, and the firm
652652 choices of $k$ and $b$ from step 7, compute the synthetic
653653 firm value:
654-
654+
655655 $V_x = -k + q + pb$
656656 - If $V_x > V$, then set $V_l = V$; otherwise, set
657657 $V_h = V$.
@@ -704,12 +704,9 @@ Parameters include:
704704- bound: Bound for truncated normal distribution. Default value is 3.
705705
706706``` {code-cell} ipython
707- import pandas as pd
708707import numpy as np
709- from scipy.stats import norm
710708from scipy.stats import truncnorm
711709from scipy.integrate import quad
712- from scipy.optimize import bisect
713710from numba import njit
714711from interpolation import interp
715712```
@@ -1946,4 +1943,3 @@ Agents of type 2 value bonds more highly (they want more hedging).
19461943
19471944Taken together with our earlier plot of equity holdings, these graphs confirm our earlier conjecture that while both type
19481945of agents hold equities, only agents of type 2 holds bonds.
1949-
0 commit comments