Skip to content

Commit 3dd4518

Browse files
authored
[lqramsey] MAINT: fix deprecation warnings (#203)
* [lqramsey] MAINT: fix deprecation warnings * remove reference to discourse forum
1 parent b6875ee commit 3dd4518

File tree

2 files changed

+16
-16
lines changed

2 files changed

+16
-16
lines changed

lectures/lqramsey.md

Lines changed: 16 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,10 @@ jupytext:
33
text_representation:
44
extension: .md
55
format_name: myst
6+
format_version: 0.13
7+
jupytext_version: 1.16.7
68
kernelspec:
7-
display_name: Python 3
9+
display_name: Python 3 (ipykernel)
810
language: python
911
name: python3
1012
---
@@ -25,10 +27,9 @@ kernelspec:
2527

2628
In addition to what's in Anaconda, this lecture will need the following libraries:
2729

28-
```{code-cell} ipython
29-
---
30-
tags: [hide-output]
31-
---
30+
```{code-cell} ipython3
31+
:tags: [hide-output]
32+
3233
!pip install --upgrade quantecon
3334
```
3435

@@ -73,7 +74,7 @@ We cover only the key features of the problem in this lecture, leaving you to re
7374

7475
We'll need the following imports:
7576

76-
```{code-cell} ipython
77+
```{code-cell} ipython3
7778
import sys
7879
import numpy as np
7980
import matplotlib.pyplot as plt
@@ -583,7 +584,7 @@ The following code provides functions for
583584

584585
Description and clarifications are given below
585586

586-
```{code-cell} python3
587+
```{code-cell} ipython3
587588
# Set up a namedtuple to store data on the model economy
588589
Economy = namedtuple('economy',
589590
('β', # Discount factor
@@ -694,7 +695,7 @@ def compute_paths(T, econ):
694695
a0 = 0.5 * (F @ (x_vals.T @ Sm.T)**2)[0]
695696
H = ((Sb - Sd + Sg) @ x_vals) * ((Sg - Ss) @ x_vals)
696697
b0 = 0.5 * (F @ H.T)[0]
697-
a0, b0 = float(a0), float(b0)
698+
a0, b0 = float(a0[0]), float(b0[0])
698699
else:
699700
H = Sm.T @ Sm
700701
a0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)
@@ -889,7 +890,7 @@ with $\rho = 0.7$, $\mu_g = 0.35$ and $C_g = \mu_g \sqrt{1 - \rho^2} / 10$.
889890

890891
Here's the code
891892

892-
```{code-cell} python3
893+
```{code-cell} ipython3
893894
# == Parameters == #
894895
β = 1 / 1.05
895896
ρ, mg = .7, .35
@@ -915,7 +916,7 @@ The legends on the figures indicate the variables being tracked.
915916
Most obvious from the figure is tax smoothing in the sense that tax revenue is
916917
much less variable than government expenditure.
917918

918-
```{code-cell} python3
919+
```{code-cell} ipython3
919920
gen_fig_2(path)
920921
```
921922

@@ -931,7 +932,7 @@ See the original [manuscript](https://lectures.quantecon.org/_downloads/firenze.
931932

932933
Our second example adopts a discrete Markov specification for the exogenous process
933934

934-
```{code-cell} python3
935+
```{code-cell} ipython3
935936
# == Parameters == #
936937
β = 1 / 1.05
937938
P = np.array([[0.8, 0.2, 0.0],
@@ -961,7 +962,7 @@ gen_fig_1(path)
961962

962963
The call `gen_fig_2(path)` generates
963964

964-
```{code-cell} python3
965+
```{code-cell} ipython3
965966
gen_fig_2(path)
966967
```
967968

@@ -997,7 +998,7 @@ Produce the corresponding figures.
997998
:class: dropdown
998999
```
9991000

1000-
```{code-cell} python3
1001+
```{code-cell} ipython3
10011002
# == Parameters == #
10021003
β = 1 / 1.05
10031004
ρ, mg = .95, .35
@@ -1023,10 +1024,11 @@ path = compute_paths(T, economy)
10231024
gen_fig_1(path)
10241025
```
10251026

1026-
```{code-cell} python3
1027+
```{code-cell} ipython3
10271028
gen_fig_2(path)
10281029
```
10291030

10301031
```{solution-end}
10311032
```
10321033

1034+

lectures/troubleshooting.md

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,5 @@ One way to give feedback is to raise an issue through our [issue tracker](https:
6565
Please be as specific as possible. Tell us where the problem is and as much
6666
detail about your local set up as you can provide.
6767

68-
Another feedback option is to use our [discourse forum](https://discourse.quantecon.org/).
69-
7068
Finally, you can provide direct feedback to [[email protected]](mailto:[email protected])
7169

0 commit comments

Comments
 (0)