@@ -190,9 +190,7 @@ Firm 1 seeks a maximum with respect to
190
190
$\{ q_ {1t+1}, v_ {1t} \} _ {t=0}^\infty$ and a minimum with respect to
191
191
$\{ \lambda_t\} _ {t=0}^\infty$.
192
192
193
- We approach this problem using methods described in Ljungqvist and
194
- Sargent RMT5 chapter 2, appendix A and Macroeconomic Theory, 2nd
195
- edition, chapter IX.
193
+ We approach this problem using methods described in {cite}` Ljungqvist2012 ` , chapter 2, appendix A and {cite}` Sargent1987 ` , chapter IX.
196
194
197
195
First-order conditions for this problem are
198
196
@@ -237,8 +235,7 @@ It satisfies **two boundary conditions:**
237
235
- a terminal condition requiring that
238
236
$\lim_ {T \rightarrow + \infty} \beta^T q_ {1t}^2 < + \infty$
239
237
240
- Using the lag operators described in chapter IX of * Macroeconomic
241
- Theory, Second edition (1987)* , difference equation
238
+ Using the lag operators described in {cite}` Sargent1987 ` , chapter IX, difference equation
242
239
{eq}` sstack1 ` can be written as
243
240
244
241
$$
@@ -1370,7 +1367,16 @@ v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d
1370
1367
(np.abs(v2_direct - v2_direct_alt) < tol2).all()
1371
1368
```
1372
1369
1373
- ## MPE vs. Stackelberg
1370
+ ## Comparing Markov Perfect Equilibrium and Stackelberg Outcome
1371
+
1372
+ It is enlightening to compare equilbrium quantities for firms 1 and 2 under two alternative
1373
+ settings:
1374
+
1375
+ * A Markov perfect equilibrium like that described in [ this lecture] ( https://python.quantecon.org/markov_perf.html )
1376
+ * A Stackelberg equilbrium
1377
+
1378
+ The following code performs the required computations.
1379
+
1374
1380
1375
1381
``` {code-cell} python3
1376
1382
vt_MPE = np.zeros(n)
0 commit comments