@@ -221,7 +221,7 @@ described in equation {eq}`eq_old6` in quantecon lecture {cite}`Calvo1978` has
221
221
$\theta$
222
222
223
223
$$
224
- - s(\theta, 0 ) \geq - s(\theta, \mu) \quad
224
+ s(\theta, 0) \geq s(\theta, \mu) \quad
225
225
$$
226
226
227
227
This inequality implies that whenever the policy calls for the
@@ -310,8 +310,8 @@ More precisely, a government plan $\vec \mu^A$ with equilibrium inflation sequen
310
310
:label: eq_old10
311
311
312
312
\begin{aligned}
313
- v_j^A & = - s(\theta^A_j, \mu^A_j) + \beta v_{j+1}^A \\
314
- & \geq - s(\theta^A_j, 0 ) + \beta v_0^A \equiv v_j^{A,D}, \quad j \geq 0
313
+ v_j^A & = s(\theta^A_j, \mu^A_j) + \beta v_{j+1}^A \\
314
+ & \geq s(\theta^A_j, 0 ) + \beta v_0^A \equiv v_j^{A,D}, \quad j \geq 0
315
315
\end{aligned}
316
316
```
317
317
@@ -333,15 +333,15 @@ a sufficient condition for another plan $\vec \mu$ associated with inflation $\v
333
333
:label: eq_old100a
334
334
335
335
\begin{aligned}
336
- v_j & = - s( \theta_j, \mu_j) + \beta v_{j+1} \\
337
- & \geq - s( \theta_j, 0) + \beta v_0^A \quad \forall j \geq 0
336
+ v_j & = s( \theta_j, \mu_j) + \beta v_{j+1} \\
337
+ & \geq s( \theta_j, 0) + \beta v_0^A \quad \forall j \geq 0
338
338
\end{aligned}
339
339
```
340
340
341
341
For this condition to be satisfied it is necessary and sufficient that
342
342
343
343
$$
344
- - s( \theta_j, 0) - ( - s( \theta_j, \mu_j) ) < \beta ( v_{j+1} - v_0^A )
344
+ s( \theta_j, 0) - s( \theta_j, \mu_j) < \beta ( v_{j+1} - v_0^A )
345
345
$$
346
346
347
347
The left side of the above inequality is the government's * gain* from deviating from the plan, while the right side is the government's * loss* from deviating
389
389
The value of $\{ \theta_t^A,\mu_t^A \} _ {t=0}^\infty$ at time $0$ is
390
390
391
391
$$
392
- v^A_0 = - \sum_{t=0}^{T_A-1} \beta^t s(\theta_t^A,\mu_t^A) +\beta^{T_A} J(\theta^R_0)
392
+ v^A_0 = \sum_{t=0}^{T_A-1} \beta^t s(\theta_t^A,\mu_t^A) +\beta^{T_A} J(\theta^R_0)
393
393
$$
394
394
395
395
For an appropriate $T_A$, this plan can be verified to be self-enforcing and therefore credible.
@@ -562,7 +562,7 @@ def abreu_plan(clq, T=1000, T_A=10, μ_bar=0.1, T_Plot=20):
562
562
# Calculate utility of stick plan
563
563
U_A = clq.β ** np.arange(T) * (
564
564
clq.u0 + clq.u1 * (-clq.θ_A) - clq.u2 / 2
565
- * (-clq.θ_A) ** 2 - clq.c * clq.μ_A ** 2
565
+ * (-clq.θ_A) ** 2 - clq.c / 2 * clq.μ_A ** 2
566
566
)
567
567
568
568
clq.V_A = np.array([np.sum(U_A[t:] / clq.β ** t) for t in range(T)])
@@ -601,7 +601,7 @@ self-enforcing plan $\vec \mu^A$ by setting $\mu_t = 0$ and
601
601
then restarting the plan at $v^A_0$ at $t+1$:
602
602
603
603
$$
604
- v_t^{A,D} = - s( \theta_j, 0) + \beta v_0^A
604
+ v_t^{A,D} = s( \theta_j, 0) + \beta v_0^A
605
605
$$
606
606
607
607
In the above graph $v_t^A > v_t^{A,D}$, which confirms that $\vec \mu^A$ is a self-enforcing plan.
@@ -617,7 +617,7 @@ Given that plan $\vec \mu^A$ is self-enforcing, we can check that
617
617
the Ramsey plan $\vec \mu^R$ is credible by verifying that:
618
618
619
619
$$
620
- v^R_t \geq - s(\theta^R_t,0) + \beta v^A_0 , \quad \forall t \geq 0
620
+ v^R_t \geq s(\theta^R_t,0) + \beta v^A_0 , \quad \forall t \geq 0
621
621
$$
622
622
623
623
``` {code-cell} ipython3
0 commit comments