167
167
\phi = \frac{A_h}{A_c} .
168
168
$$
169
169
170
- Soon we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
171
-
172
- But first we'll describe an alternative interpretation of our model that mostly just relabels variables.
173
-
174
-
175
-
176
- ## Reinterpreting the model: workers and entrepreneurs
177
-
178
-
179
- We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
180
-
181
- We now let $h$ be the present value of a "worker".
182
-
183
- We define the present value of an entrepreneur to be
184
-
185
- $$
186
- c_0 = \pi \sum_ {t=4}^T R^{-t} w_t^c
187
- $$
188
-
189
- where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
190
-
191
- For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
192
-
193
- This cost might include costs of hiring workers, office space, and lawyers.
194
-
195
-
196
-
197
- What we used to call the college, high school wage gap $\phi$ now becomes the ratio
198
- of a successful entrepreneur's earnings to a worker's earnings.
199
-
200
- We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
201
- be an entrepreuner, the higher must be the reward for a successful project.
170
+ In the next section we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
202
171
203
172
## Computations
204
173
@@ -210,29 +179,25 @@ Now let's write some Python code to compute $\phi$ and plot it as a function of
210
179
211
180
```{code-cell} ipython3
212
181
# Define the namedtuple for the equalizing difference model
213
- EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π ')
214
-
215
- def create_edm(R=1.05, # Gross rate of return
216
- T=40, # Time horizon
217
- γ_h=1.01, # High -school wage growth
218
- γ_c=1.01, # College wage growth
219
- w_h0=1, # Initial wage (high school)
220
- D=10, # Cost for college
221
- π=None ):
182
+ EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D')
183
+
184
+ def create_edm(R=1.05, # gross rate of return
185
+ T=40, # time horizon
186
+ γ_h=1.01, # high -school wage growth
187
+ γ_c=1.01, # college wage growth
188
+ w_h0=1, # initial wage (high school)
189
+ D=10, # cost for college
190
+ ):
222
191
223
- return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π )
192
+ return EqDiffModel(R, T, γ_h, γ_c, w_h0, D)
224
193
225
194
def compute_gap(model):
226
- R, T, γ_h, γ_c, w_h0, D, π = model
195
+ R, T, γ_h, γ_c, w_h0, D = model
227
196
228
197
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
229
198
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
230
-
231
- # Tweaked model
232
- if π is not None:
233
- A_c = π * A_c
234
-
235
199
ϕ = A_h / A_c + D / (w_h0 * A_c)
200
+
236
201
return ϕ
237
202
```
238
203
@@ -267,7 +232,10 @@ Let's start with the gross interest rate $R$.
267
232
268
233
```{code-cell} ipython3
269
234
R_arr = np.linspace(1, 1.2, 50)
270
- plt.plot(R_arr, compute_gap(create_edm(R=R_arr)))
235
+ models = [create_edm(R=r) for r in R_arr]
236
+ gaps = [compute_gap(model) for model in models]
237
+
238
+ plt.plot(R_arr, gaps)
271
239
plt.xlabel(r'$R$')
272
240
plt.ylabel(r'wage gap')
273
241
plt.show()
@@ -280,7 +248,10 @@ determinants of $\phi$.
280
248
281
249
```{code-cell} ipython3
282
250
γc_arr = np.linspace(1, 1.2, 50)
283
- plt.plot(γc_arr, compute_gap(create_edm(γ_c=γc_arr)))
251
+ models = [create_edm(γ_c=γ_c) for γ_c in γc_arr]
252
+ gaps = [compute_gap(model) for model in models]
253
+
254
+ plt.plot(γc_arr, gaps)
284
255
plt.xlabel(r'$\gamma_c$')
285
256
plt.ylabel(r'wage gap')
286
257
plt.show()
@@ -296,21 +267,74 @@ The following graph shows what happens.
296
267
297
268
```{code-cell} ipython3
298
269
γh_arr = np.linspace(1, 1.1, 50)
299
- plt.plot(γh_arr, compute_gap(create_edm(γ_h=γh_arr)))
270
+ models = [create_edm(γ_h=γ_h) for γ_h in γh_arr]
271
+ gaps = [compute_gap(model) for model in models]
272
+
273
+ plt.plot(γh_arr, gaps)
300
274
plt.xlabel(r'$\gamma_h$')
301
275
plt.ylabel(r'wage gap')
302
276
plt.show()
303
277
```
304
278
305
279
## Entrepreneur-worker interpretation
306
280
307
- Now let's adopt the entrepreneur-worker interpretation of our model.
281
+ We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
282
+
283
+ We now let $h$ be the present value of a "worker".
284
+
285
+ We define the present value of an entrepreneur to be
286
+
287
+ $$
288
+ c_0 = \pi \sum_ {t=4}^T R^{-t} w_t^c
289
+ $$
290
+
291
+ where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
292
+
293
+ For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
294
+
295
+ This cost might include costs of hiring workers, office space, and lawyers.
296
+
297
+ What we used to call the college, high school wage gap $\phi$ now becomes the ratio
298
+ of a successful entrepreneur's earnings to a worker's earnings.
299
+
300
+ We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
301
+ be an entrepreuner, the higher must be the reward for a successful project.
302
+
303
+ Now let's adopt the entrepreneur-worker interpretation of our model
304
+
305
+ ```{code-cell} ipython3
306
+ # Define a model of entrepreneur-worker interpretation
307
+ EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π')
308
+
309
+ def create_edm_π(R=1.05, # gross rate of return
310
+ T=40, # time horizon
311
+ γ_h=1.01, # high-school wage growth
312
+ γ_c=1.01, # college wage growth
313
+ w_h0=1, # initial wage (high school)
314
+ D=10, # cost for college
315
+ π=0 # chance of business success
316
+ ):
317
+
318
+ return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π)
319
+
320
+
321
+ def compute_gap(model):
322
+ R, T, γ_h, γ_c, w_h0, D, π = model
323
+
324
+ A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
325
+ A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
326
+
327
+ # Incorprate chance of success
328
+ A_c = π * A_c
329
+
330
+ ϕ = A_h / A_c + D / (w_h0 * A_c)
331
+ return ϕ
332
+ ```
308
333
309
334
If the probability that a new business succeeds is $0.2$, let's compute the initial wage premium for successful entrepreneurs.
310
335
311
336
```{code-cell} ipython3
312
- # a model of enterpreneur
313
- ex3 = create_edm(π=0.2)
337
+ ex3 = create_edm_π(π=0.2)
314
338
gap3 = compute_gap(ex3)
315
339
316
340
gap3
@@ -320,7 +344,10 @@ Now let's study how the initial wage premium for successful entrepreneurs depend
320
344
321
345
```{code-cell} ipython3
322
346
π_arr = np.linspace(0.2, 1, 50)
323
- plt.plot(π_arr, compute_gap(create_edm(π=π_arr)))
347
+ models = [create_edm_π(π=π) for π in π_arr]
348
+ gaps = [compute_gap(model) for model in models]
349
+
350
+ plt.plot(π_arr, gaps)
324
351
plt.ylabel(r'wage gap')
325
352
plt.xlabel(r'$\pi$')
326
353
plt.show()
@@ -430,7 +457,7 @@ Let's compute $\frac{\partial \phi}{\partial γ_h}$ and evaluate it at default p
430
457
ϕ_γ_h_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
431
458
```
432
459
433
- We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, as we did with our earlier graphical analysis.
460
+ We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
434
461
435
462
Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at default parameter values
436
463
@@ -445,7 +472,7 @@ Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at def
445
472
ϕ_γ_c_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
446
473
```
447
474
448
- We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
475
+ We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
449
476
450
477
Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at default parameter values
451
478
@@ -460,4 +487,4 @@ Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at
460
487
ϕ_R_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
461
488
```
462
489
463
- We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
490
+ We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
0 commit comments