Skip to content

Commit 568dcd5

Browse files
committed
use more explicit computation and move \pi to later part of the lecture
1 parent 4a6dd4e commit 568dcd5

File tree

1 file changed

+85
-58
lines changed

1 file changed

+85
-58
lines changed

lectures/equalizing_difference.md

+85-58
Original file line numberDiff line numberDiff line change
@@ -167,38 +167,7 @@ $$
167167
\phi = \frac{A_h}{A_c} .
168168
$$
169169
170-
Soon we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
171-
172-
But first we'll describe an alternative interpretation of our model that mostly just relabels variables.
173-
174-
175-
176-
## Reinterpreting the model: workers and entrepreneurs
177-
178-
179-
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
180-
181-
We now let $h$ be the present value of a "worker".
182-
183-
We define the present value of an entrepreneur to be
184-
185-
$$
186-
c_0 = \pi \sum_{t=4}^T R^{-t} w_t^c
187-
$$
188-
189-
where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
190-
191-
For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
192-
193-
This cost might include costs of hiring workers, office space, and lawyers.
194-
195-
196-
197-
What we used to call the college, high school wage gap $\phi$ now becomes the ratio
198-
of a successful entrepreneur's earnings to a worker's earnings.
199-
200-
We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
201-
be an entrepreuner, the higher must be the reward for a successful project.
170+
In the next section we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
202171
203172
## Computations
204173
@@ -210,29 +179,25 @@ Now let's write some Python code to compute $\phi$ and plot it as a function of
210179
211180
```{code-cell} ipython3
212181
# Define the namedtuple for the equalizing difference model
213-
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π')
214-
215-
def create_edm(R=1.05, # Gross rate of return
216-
T=40, # Time horizon
217-
γ_h=1.01, # High-school wage growth
218-
γ_c=1.01, # College wage growth
219-
w_h0=1, # Initial wage (high school)
220-
D=10, # Cost for college
221-
π=None):
182+
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D')
183+
184+
def create_edm(R=1.05, # gross rate of return
185+
T=40, # time horizon
186+
γ_h=1.01, # high-school wage growth
187+
γ_c=1.01, # college wage growth
188+
w_h0=1, # initial wage (high school)
189+
D=10, # cost for college
190+
):
222191
223-
return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π)
192+
return EqDiffModel(R, T, γ_h, γ_c, w_h0, D)
224193
225194
def compute_gap(model):
226-
R, T, γ_h, γ_c, w_h0, D, π = model
195+
R, T, γ_h, γ_c, w_h0, D = model
227196
228197
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
229198
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
230-
231-
# Tweaked model
232-
if π is not None:
233-
A_c = π * A_c
234-
235199
ϕ = A_h / A_c + D / (w_h0 * A_c)
200+
236201
return ϕ
237202
```
238203
@@ -267,7 +232,10 @@ Let's start with the gross interest rate $R$.
267232
268233
```{code-cell} ipython3
269234
R_arr = np.linspace(1, 1.2, 50)
270-
plt.plot(R_arr, compute_gap(create_edm(R=R_arr)))
235+
models = [create_edm(R=r) for r in R_arr]
236+
gaps = [compute_gap(model) for model in models]
237+
238+
plt.plot(R_arr, gaps)
271239
plt.xlabel(r'$R$')
272240
plt.ylabel(r'wage gap')
273241
plt.show()
@@ -280,7 +248,10 @@ determinants of $\phi$.
280248
281249
```{code-cell} ipython3
282250
γc_arr = np.linspace(1, 1.2, 50)
283-
plt.plot(γc_arr, compute_gap(create_edm(γ_c=γc_arr)))
251+
models = [create_edm(γ_c=γ_c) for γ_c in γc_arr]
252+
gaps = [compute_gap(model) for model in models]
253+
254+
plt.plot(γc_arr, gaps)
284255
plt.xlabel(r'$\gamma_c$')
285256
plt.ylabel(r'wage gap')
286257
plt.show()
@@ -296,21 +267,74 @@ The following graph shows what happens.
296267
297268
```{code-cell} ipython3
298269
γh_arr = np.linspace(1, 1.1, 50)
299-
plt.plot(γh_arr, compute_gap(create_edm(γ_h=γh_arr)))
270+
models = [create_edm(γ_h=γ_h) for γ_h in γh_arr]
271+
gaps = [compute_gap(model) for model in models]
272+
273+
plt.plot(γh_arr, gaps)
300274
plt.xlabel(r'$\gamma_h$')
301275
plt.ylabel(r'wage gap')
302276
plt.show()
303277
```
304278
305279
## Entrepreneur-worker interpretation
306280
307-
Now let's adopt the entrepreneur-worker interpretation of our model.
281+
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
282+
283+
We now let $h$ be the present value of a "worker".
284+
285+
We define the present value of an entrepreneur to be
286+
287+
$$
288+
c_0 = \pi \sum_{t=4}^T R^{-t} w_t^c
289+
$$
290+
291+
where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
292+
293+
For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
294+
295+
This cost might include costs of hiring workers, office space, and lawyers.
296+
297+
What we used to call the college, high school wage gap $\phi$ now becomes the ratio
298+
of a successful entrepreneur's earnings to a worker's earnings.
299+
300+
We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
301+
be an entrepreuner, the higher must be the reward for a successful project.
302+
303+
Now let's adopt the entrepreneur-worker interpretation of our model
304+
305+
```{code-cell} ipython3
306+
# Define a model of entrepreneur-worker interpretation
307+
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π')
308+
309+
def create_edm_π(R=1.05, # gross rate of return
310+
T=40, # time horizon
311+
γ_h=1.01, # high-school wage growth
312+
γ_c=1.01, # college wage growth
313+
w_h0=1, # initial wage (high school)
314+
D=10, # cost for college
315+
π=0 # chance of business success
316+
):
317+
318+
return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π)
319+
320+
321+
def compute_gap(model):
322+
R, T, γ_h, γ_c, w_h0, D, π = model
323+
324+
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
325+
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
326+
327+
# Incorprate chance of success
328+
A_c = π * A_c
329+
330+
ϕ = A_h / A_c + D / (w_h0 * A_c)
331+
return ϕ
332+
```
308333
309334
If the probability that a new business succeeds is $0.2$, let's compute the initial wage premium for successful entrepreneurs.
310335
311336
```{code-cell} ipython3
312-
# a model of enterpreneur
313-
ex3 = create_edm(π=0.2)
337+
ex3 = create_edm_π(π=0.2)
314338
gap3 = compute_gap(ex3)
315339
316340
gap3
@@ -320,7 +344,10 @@ Now let's study how the initial wage premium for successful entrepreneurs depend
320344
321345
```{code-cell} ipython3
322346
π_arr = np.linspace(0.2, 1, 50)
323-
plt.plot(π_arr, compute_gap(create_edm(π=π_arr)))
347+
models = [create_edm_π(π=π) for π in π_arr]
348+
gaps = [compute_gap(model) for model in models]
349+
350+
plt.plot(π_arr, gaps)
324351
plt.ylabel(r'wage gap')
325352
plt.xlabel(r'$\pi$')
326353
plt.show()
@@ -430,7 +457,7 @@ Let's compute $\frac{\partial \phi}{\partial γ_h}$ and evaluate it at default p
430457
ϕ_γ_h_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
431458
```
432459
433-
We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, as we did with our earlier graphical analysis.
460+
We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
434461
435462
Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at default parameter values
436463
@@ -445,7 +472,7 @@ Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at def
445472
ϕ_γ_c_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
446473
```
447474
448-
We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
475+
We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
449476
450477
Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at default parameter values
451478
@@ -460,4 +487,4 @@ Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at
460487
ϕ_R_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
461488
```
462489
463-
We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
490+
We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.

0 commit comments

Comments
 (0)