@@ -134,7 +134,7 @@ too much from the mean.
134
134
Putting this another way, light-tailed distributions are those that
135
135
rarely generate extreme values.
136
136
137
- (A more formal definition is given [ below] ( https://intro.quantecon.org/heavy_tails.html#light-and- heavy-tails ) .)
137
+ (A more formal definition is given {ref} ` below < heavy-tail:formal-definition> ` .)
138
138
139
139
Many statisticians and econometricians
140
140
use rules of thumb such as "outcomes more than four or five
308
308
* forecasting
309
309
* taxation (across a heavy-tailed income distribution), etc.
310
310
311
- We return to these points [ below] ( https://intro.quantecon.org/heavy_tails.html#why-do- heavy-tails-matter ) .
311
+ We return to these points {ref} ` below < heavy-tail:application> ` .
312
312
313
313
314
314
## Visual comparisons
@@ -541,6 +541,8 @@ fig, ax = plt.subplots()
541
541
alpha = 1.0
542
542
ax.plot(x, np.exp(- alpha * x), label='exponential', alpha=0.8)
543
543
ax.plot(x, x**(- alpha), label='Pareto', alpha=0.8)
544
+ ax.set_xlabel('X value')
545
+ ax.set_ylabel('CCDF')
544
546
ax.legend()
545
547
plt.show()
546
548
```
@@ -559,6 +561,8 @@ fig, ax = plt.subplots()
559
561
alpha = 1.0
560
562
ax.loglog(x, np.exp(- alpha * x), label='exponential', alpha=0.8)
561
563
ax.loglog(x, x**(- alpha), label='Pareto', alpha=0.8)
564
+ ax.set_xlabel('log value')
565
+ ax.set_ylabel('log prob')
562
566
ax.legend()
563
567
plt.show()
564
568
```
@@ -996,6 +1000,7 @@ The sequence shows no sign of converging.
996
1000
We return to this point in the exercises.
997
1001
998
1002
1003
+ (heavy-tail: application )=
999
1004
## Why do heavy tails matter?
1000
1005
1001
1006
We have now seen that
@@ -1073,6 +1078,7 @@ nonnegative random variables and their distributions.
1073
1078
The definitions for
1074
1079
left hand tails are very similar and we omit them to simplify the exposition.
1075
1080
1081
+ (heavy-tail: formal-definition )=
1076
1082
### Light and heavy tails
1077
1083
1078
1084
A distribution $F$ with density $f$ on $\mathbb R_ +$ is called [ heavy-tailed] ( https://en.wikipedia.org/wiki/Heavy-tailed_distribution ) if
0 commit comments