You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lectures/heavy_tails.md
+6-6Lines changed: 6 additions & 6 deletions
Original file line number
Diff line number
Diff line change
@@ -245,7 +245,7 @@ distribution:
245
245
---
246
246
mystnb:
247
247
figure:
248
-
caption: Histogram (Normal vs Bitcoin returns)
248
+
caption: Histogram (normal vs bitcoin returns)
249
249
name: hist-normal-btc
250
250
---
251
251
r = np.random.standard_t(df=5, size=1000)
@@ -336,7 +336,7 @@ heavy-tailed.
336
336
---
337
337
mystnb:
338
338
figure:
339
-
caption: Draws from Normal and Cauchy distributions
339
+
caption: Draws from normal and Cauchy distributions
340
340
name: draws-normal-cauchy
341
341
---
342
342
n = 120
@@ -395,7 +395,7 @@ Here are some draws from the exponential distribution.
395
395
---
396
396
mystnb:
397
397
figure:
398
-
caption: Draws of Exponential distribution
398
+
caption: Draws of exponential distribution
399
399
name: draws-exponential
400
400
---
401
401
n = 120
@@ -643,15 +643,15 @@ We can also use a [qq plot](https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot) to d
643
643
644
644
The [statsmodels](https://www.statsmodels.org/stable/index.html) package provides a convenient [qqplot](https://www.statsmodels.org/stable/generated/statsmodels.graphics.gofplots.qqplot.html) function that, by default, compares sample data to the quintiles of the normal distribution.
645
645
646
-
If the data is drawn from a Normal distribution, the plot would look like:
646
+
If the data is drawn from a normal distribution, the plot would look like:
647
647
648
648
```{code-cell} ipython3
649
649
data_normal = np.random.normal(size=sample_size)
650
650
sm.qqplot(data_normal, line='45')
651
651
plt.show()
652
652
```
653
653
654
-
We can now compare this with the exponential, log-normal, and pareto distributions
654
+
We can now compare this with the exponential, log-normal, and Pareto distributions
655
655
656
656
```{code-cell} ipython3
657
657
# Build figure
@@ -858,7 +858,7 @@ The data is from the Forbes Billionaires list in 2020.
858
858
---
859
859
mystnb:
860
860
figure:
861
-
caption: Wealth distribution (Forbes Billionaires in 2020)
861
+
caption: Wealth distribution (Forbes billionaires in 2020)
0 commit comments