|
| 1 | +import os |
| 2 | +import argparse |
| 3 | +from sklearn.feature_extraction.text import TfidfVectorizer |
| 4 | +from sklearn.metrics.pairwise import cosine_similarity |
| 5 | +import PyPDF2 |
| 6 | + |
| 7 | +def extract_text_from_pdf(pdf_path): |
| 8 | + text = "" |
| 9 | + try: |
| 10 | + with open(pdf_path, "rb") as file: |
| 11 | + reader = PyPDF2.PdfReader(file) |
| 12 | + for page in reader.pages: |
| 13 | + text += page.extract_text() or "" |
| 14 | + except Exception as e: |
| 15 | + print(f"Error reading PDF: {e}") |
| 16 | + return text |
| 17 | + |
| 18 | +def read_text_file(path): |
| 19 | + try: |
| 20 | + with open(path, "r", encoding="utf-8") as f: |
| 21 | + return f.read() |
| 22 | + except Exception as e: |
| 23 | + print(f"Error reading file: {e}") |
| 24 | + return "" |
| 25 | + |
| 26 | +def calculate_similarity(resume_text, jd_text): |
| 27 | + tfidf = TfidfVectorizer(stop_words='english') |
| 28 | + tfidf_matrix = tfidf.fit_transform([resume_text, jd_text]) |
| 29 | + score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0] |
| 30 | + return round(score * 100, 2) # percentage match |
| 31 | + |
| 32 | +def main(): |
| 33 | + parser = argparse.ArgumentParser(description="AI Resume Ranker") |
| 34 | + parser.add_argument('--resume', required=True, help="Path to resume file (.txt or .pdf)") |
| 35 | + parser.add_argument('--jd', required=True, help="Path to job description (.txt)") |
| 36 | + |
| 37 | + args = parser.parse_args() |
| 38 | + |
| 39 | + resume_path = args.resume |
| 40 | + jd_path = args.jd |
| 41 | + |
| 42 | + # Load resume |
| 43 | + if resume_path.lower().endswith(".pdf"): |
| 44 | + resume_text = extract_text_from_pdf(resume_path) |
| 45 | + elif resume_path.lower().endswith(".txt"): |
| 46 | + resume_text = read_text_file(resume_path) |
| 47 | + else: |
| 48 | + print("Unsupported resume file type. Use .pdf or .txt") |
| 49 | + return |
| 50 | + |
| 51 | + # Load job description |
| 52 | + jd_text = read_text_file(jd_path) |
| 53 | + |
| 54 | + if not resume_text.strip() or not jd_text.strip(): |
| 55 | + print("Both resume and job description must contain text.") |
| 56 | + return |
| 57 | + |
| 58 | + score = calculate_similarity(resume_text, jd_text) |
| 59 | + print(f"\n🔍 Resume Match Score: {score}%") |
| 60 | + |
| 61 | + if score > 80: |
| 62 | + print("✅ Strong match! Consider applying.") |
| 63 | + elif score > 60: |
| 64 | + print("⚠️ Decent match. Tailoring may help.") |
| 65 | + else: |
| 66 | + print("❌ Low match. Consider improving the resume.") |
| 67 | + |
| 68 | +if __name__ == "__main__": |
| 69 | + main() |
0 commit comments