-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
105 lines (88 loc) · 3.77 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from imports import *
from fastai.vision import *
from params import *
import hashlib
def seed_everything(seed):
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
def save_model_weights(model, filename, verbose=1, cp_folder=CP_PATH):
if verbose:
print(f"\n -> Saving weights to {os.path.join(cp_folder, filename)}\n")
torch.save(model.state_dict(), os.path.join(cp_folder, filename))
def load_model_weights(model, filename, verbose=1, cp_folder=CP_PATH, strict=True):
if verbose:
print(f"\n -> Loading weights from {os.path.join(cp_folder, filename)}\n")
try:
model.load_state_dict(os.path.join(cp_folder, filename), strict=strict)
except BaseException:
model.load_state_dict(
torch.load(os.path.join(cp_folder, filename), map_location="cpu"),
strict=strict,
)
return model
def count_parameters(model, all=False):
if all:
return sum(p.numel() for p in model.parameters())
else:
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def pretty_size(size):
"""Pretty prints a torch.Size object"""
assert isinstance(size, torch.Size)
return " × ".join(map(str, size))
def dump_tensors(gpu_only=True, verbose=0):
"""Prints a list of the Tensors being tracked by the garbage collector."""
total_size = 0
for obj in gc.get_objects():
try:
if torch.is_tensor(obj):
if not gpu_only or obj.is_cuda:
if verbose:
print(
"%s:%s%s %s"
% (
type(obj).__name__,
" GPU" if obj.is_cuda else "",
" pinned" if obj.is_pinned else "",
pretty_size(obj.size()),
)
)
total_size += obj.numel()
elif hasattr(obj, "data") and torch.is_tensor(obj.data):
if not gpu_only or obj.is_cuda:
if verbose:
print(
"%s → %s:%s%s%s%s %s"
% (
type(obj).__name__,
type(obj.data).__name__,
" GPU" if obj.is_cuda else "",
" pinned" if obj.data.is_pinned else "",
" grad" if obj.requires_grad else "",
" volatile" if obj.volatile else "",
pretty_size(obj.data.size()),
)
)
total_size += obj.data.numel()
except Exception as e:
pass
print("Total size:", total_size)
def calc_hash( mystr ):
return int( hashlib.md5( mystr.encode('utf-8') ).hexdigest(), 16 )
class CustomGroupKFold():
def __init__(self, n_splits, random_state=2020):
self.n_splits = n_splits
self.random_state = random_state
self.group = None
def split(self, X=None, y=None, groups=None):
seed = '_' + str(self.random_state)
self.group = groups.values.copy()
indexes = np.array([calc_hash(str(val) + seed) % self.n_splits for val in self.group])
for fold in range(self.n_splits):
train_idx = np.where(indexes != fold)[0]
test_idx = np.where(indexes == fold)[0]
yield train_idx, test_idx