-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest.py
286 lines (224 loc) · 8.77 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import argparse
import datetime
import time
import torch
import model.model as module_arch
from parse_config import ConfigParser
from utils3d import Utils3D
from utils3d import Render3D
from prediction import Predict2D
import os
import numpy as np
from scipy.spatial import distance
import math
import vtk
import sys
def get_working_device(config):
device = torch.device('cpu')
if config['n_gpu'] >= 1 and torch.cuda.is_available() and torch.cuda.get_device_capability()[0] > 3:
device = torch.device('cuda')
return device
def get_device_and_load_model(config):
logger = config.get_logger('test')
logger.debug('Initialising model')
model = config.initialize('arch', module_arch)
# logger.info(model)
if config.resume is None:
logger.error('Expecting model to be specified using the --r flag')
return None, None
check_point_name = str(config.resume)
logger.info('Loading checkpoint: {}'.format(check_point_name))
device = get_working_device(config)
checkpoint = torch.load(check_point_name, map_location=device)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1 and device == torch.device('cuda'):
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
epochs = checkpoint['epoch']
logger.debug('Model was trained for ' + str(epochs) + ' epochs')
# prepare model for predicting
model = model.to(device)
model.eval()
return device, model
def predict_one_subject(config, file_name):
device, model = get_device_and_load_model(config)
render_3d = Render3D(config)
image_stack, transform_stack = render_3d.render_3d_file(file_name)
predict_2d = Predict2D(config, model, device)
heatmap_maxima = predict_2d.predict_heatmaps_from_images(image_stack)
u3d = Utils3D(config)
u3d.heatmap_maxima = heatmap_maxima
# u3d.read_heatmap_maxima()
# u3d.read_3d_transformations()
u3d.transformations_3d = transform_stack
u3d.compute_lines_from_heatmap_maxima()
# u3d.visualise_one_landmark_lines(40, 'saved/temp/DeepMVLM_DTU3D/0904_104414')
u3d.compute_all_landmarks_from_view_lines()
u3d.project_landmarks_to_surface(file_name)
# u3d.write_landmarks_as_vtk_points()
return u3d.landmarks
def read_3d_landmarks(file_name):
lms = []
with open(file_name) as f:
for line in f:
line = line.strip("/n")
x, y, z = np.double(line.split(" "))
lms.append((x, y, z))
return lms
def write_landmark_accuracy(gt_lm, pred_lm, file):
if len(gt_lm) != len(pred_lm):
print('Number of gt landmarks ', len(gt_lm), ' does not match number of predicted lm ', len(pred_lm))
return None
sum_dist = 0
for idx in range(len(gt_lm)):
gt_p = gt_lm[idx]
pr_p = pred_lm[idx]
dst = distance.euclidean(gt_p, pr_p)
sum_dist = sum_dist + dst
file.write(str(dst))
if idx != len(gt_lm):
file.write(', ')
file.write('\n')
print('Average landmark error ', sum_dist / len(gt_lm))
# TODO Use render3d version
def get_landmark_bounds(lms):
x_min = lms[0][0]
x_max = x_min
y_min = lms[0][1]
y_max = y_min
z_min = lms[0][2]
z_max = z_min
for lm in lms:
x = lm[0]
y = lm[1]
z = lm[2]
x_min = min(x_min, x)
x_max = max(x_max, x)
y_min = min(y_min, y)
y_max = max(y_max, y)
z_min = min(z_min, z)
z_max = max(z_max, z)
return x_min, x_max, y_min, y_max, z_min, z_max
# TODO Use render3d version
def get_landmarks_bounding_box_diagonal_length(lms):
x_min, x_max, y_min, y_max, z_min, z_max = get_landmark_bounds(lms)
# Diagonal length
diag_len = math.sqrt((x_max-x_min) * (x_max-x_min) + (y_max-y_min) * (y_max-y_min) + (z_max-z_min) * (z_max-z_min))
return diag_len
# TODO Move to render3d or utils3D
def visualise_landmarks_as_spheres_with_accuracy(gt_lm, pred_lm, file_out):
diag_len = get_landmarks_bounding_box_diagonal_length(gt_lm)
# sphere radius is 10% of bounding box diagonal
sphere_size = diag_len * 0.010
append = vtk.vtkAppendPolyData()
for idx in range(len(gt_lm)):
gt_p = gt_lm[idx]
pr_p = pred_lm[idx]
scalars = vtk.vtkDoubleArray()
scalars.SetNumberOfComponents(1)
sphere = vtk.vtkSphereSource()
sphere.SetCenter(pr_p)
sphere.SetRadius(sphere_size)
sphere.SetThetaResolution(20)
sphere.SetPhiResolution(20)
sphere.Update()
scalars.SetNumberOfValues(sphere.GetOutput().GetNumberOfPoints())
dst = distance.euclidean(gt_p, pr_p)
for s in range(sphere.GetOutput().GetNumberOfPoints()):
scalars.SetValue(s, dst)
sphere.GetOutput().GetPointData().SetScalars(scalars)
append.AddInputData(sphere.GetOutput())
del sphere
del scalars
append.Update()
writer = vtk.vtkPolyDataWriter()
writer.SetInputData(append.GetOutput())
writer.SetFileName(file_out)
writer.Write()
del writer
del append
def write_lm_names_to_result_file(res_f):
lm_name_file = os.path.dirname(sys.argv[0]) + "/docs/DTU-3D_landmark_info.txt"
lm_names = []
with open(lm_name_file) as f:
for line in f:
line = line.strip("/n")
line = line.strip("\n")
line = line.rstrip()
t = np.array(line.split(';'))
lm_names.append(t)
# clean_name = os.path.splitext(line)[0]
#if len(clean_name) > 0:
#files.append(clean_name)
for lm in lm_names:
idx = lm[0]
res_f.write(', ' + str(idx))
res_f.write('\n')
for lm in lm_names:
name = lm[1]
res_f.write(', ' + name)
res_f.write('\n')
res_f.flush()
def test_on_bu_3d_fe(config):
test_set_file = config['data_loader']['args']['data_dir'] + '/dataset_test.txt'
# test_set_file = config['data_loader']['args']['data_dir'] + '/face_dataset_debug.txt'
result_file = config.temp_dir / 'results.csv'
device, model = get_device_and_load_model(config)
files = []
with open(test_set_file) as f:
for line in f:
line = line.strip("/n")
line = line.strip("\n")
clean_name = os.path.splitext(line)[0]
if len(clean_name) > 0:
files.append(clean_name)
print('Read', len(files), 'files to run test on')
bu_3dfe_dir = config['preparedata']['raw_data_dir']
idx = 0
res_f = open(result_file, "w")
start_time = time.time()
for f_name in files:
lm_name = bu_3dfe_dir + f_name + '_RAW_84_LMS.txt'
wrl_name = bu_3dfe_dir + f_name + '_RAW.wrl'
# bmp_name = bu_3dfe_dir + f_name + '_F3D.bmp'
gt_lms = read_3d_landmarks(lm_name)
if os.path.isfile(wrl_name):
print('Computing file ', idx, ' of ', len(files))
render_3d = Render3D(config)
image_stack, transform_stack = render_3d.render_3d_file(wrl_name)
predict_2d = Predict2D(config, model, device)
heatmap_maxima = predict_2d.predict_heatmaps_from_images(image_stack)
print('Computing 3D landmarks')
u3d = Utils3D(config)
u3d.heatmap_maxima = heatmap_maxima
u3d.transformations_3d = transform_stack
u3d.compute_lines_from_heatmap_maxima()
# u3d.visualise_one_landmark_lines(83)
# u3d.visualise_one_landmark_lines(26)
u3d.compute_all_landmarks_from_view_lines()
u3d.project_landmarks_to_surface(wrl_name)
pred_lms = u3d.landmarks
res_f.write(f_name + ', ')
write_landmark_accuracy(gt_lms, pred_lms, res_f)
res_f.flush()
base_name = os.path.basename(f_name)
sphere_file = config.temp_dir / (base_name + '_landmarkAccuracy.vtk')
visualise_landmarks_as_spheres_with_accuracy(gt_lms, pred_lms, str(sphere_file))
idx = idx + 1
time_per_test = (time.time()-start_time) / idx
time_left = (len(files) - idx) * time_per_test
print('Time left in test: ', str(datetime.timedelta(seconds=time_left)))
else:
print('File', wrl_name, ' does not exists')
def main(config):
test_on_bu_3d_fe(config)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='Deep-MVLM')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
cfg_global = ConfigParser(args)
main(cfg_global)