-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtrain.py
162 lines (132 loc) · 5.95 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse
import collections
import math
import torch
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import Trainer
import matplotlib.pyplot as plt
import numpy as np
import random
# Helper function to show a batch
# from https://pytorch.org/tutorials/beginner/data_loading_tutorial.html
def show_batch(sample_batched, config):
"""Show image with landmarks for a batch of samples."""
images_batch, heat_map_batch = sample_batched['image'], sample_batched['heat_map_stack']
heat_map_batch = heat_map_batch.numpy()
im_size = images_batch.size(2)
hm_size = heat_map_batch.shape[2]
channels = config['data_loader']['args']['image_channels']
# Super hacky way to convert gray to RGB
# show first image in batch
i = np.zeros((im_size, im_size, 3))
if channels == "geometry" or channels == "depth":
i[:, :, 0] = images_batch[0][:, :, 0]
i[:, :, 1] = images_batch[0][:, :, 0]
i[:, :, 2] = images_batch[0][:, :, 0]
elif channels == "RGB":
i[:, :, :] = images_batch[0][:, :, :]
# Generate combined heatmap image in red channel.
# This must be possible to do smarter - Alas! My Python skillz are lacking
hm = np.zeros((hm_size, hm_size, 3))
n_lm = heat_map_batch.shape[4]
for lm in range(n_lm):
r = random.random() # generate random colour placed on the unit sphere in RGB space
g = random.random()
b = random.random()
v_len = math.sqrt(r * r + g * g + b * b)
r = r / v_len
g = g / v_len
b = b / v_len
hm[:, :, 0] = hm[:, :, 0] + heat_map_batch[0, 0, :, :, lm] * r
hm[:, :, 1] = hm[:, :, 1] + heat_map_batch[0, 0, :, :, lm] * g
hm[:, :, 2] = hm[:, :, 2] + heat_map_batch[0, 0, :, :, lm] * b
# for x in range(hm_size):
# for y in range(hm_size):
# hm[x, y, 0] = hm[x, y, 0] + heat_map_batch[0, 0, x, y, lm] * r
# hm[x, y, 1] = hm[x, y, 1] + heat_map_batch[0, 0, x, y, lm] * g
# hm[x, y, 2] = hm[x, y, 2] + heat_map_batch[0, 0, x, y, lm] * b
plt.figure()
plt.imshow(i)
plt.figure()
plt.imshow(hm)
plt.axis('off')
plt.ioff()
plt.show()
def test_dataloader(config):
# logger = config.get_logger('train')
# setup data_loader instances
data_loader = config.initialize('data_loader', module_data)
for batch_idx, sample_batched in enumerate(data_loader):
print('Batch id: ', batch_idx)
show_batch(sample_batched, config)
break
def test_model_mvlm(config):
logger = config.get_logger('train')
model = config.initialize('arch', module_arch)
logger.info(model)
def get_cuda_info():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print()
print('Selected cuda device: ', torch.cuda.current_device())
print('Number of GPUs available: ', torch.cuda.device_count())
# Additional Info when using cuda
if device.type == 'cuda':
print('Cuda device name: ', torch.cuda.get_device_name(0))
print('Cuda capabilities: ', torch.cuda.get_device_capability(0))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1), 'GB')
print('Cached: ', round(torch.cuda.memory_cached(0) / 1024 ** 3, 1), 'GB')
print('Max allocated: ', round(torch.cuda.max_memory_allocated(0) / 1024 ** 3, 1), 'GB')
def main(config):
# logger = config.get_logger('train')
# setup data_loader instances
print('Initialising data loader')
data_loader = config.initialize('data_loader', module_data)
print('Initialising validation data')
valid_data_loader = data_loader.split_validation()
print('Initialising model')
# build model architecture, then print to console
model = config.initialize('arch', module_arch)
# logger.info(model)
print('Initialising loss')
# get function handles of loss and metrics
loss = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
print('Initialising optimizer')
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.initialize('optimizer', torch.optim, trainable_params)
print('Initialising scheduler')
lr_scheduler = config.initialize('lr_scheduler', torch.optim.lr_scheduler, optimizer)
print('Initialising trainer')
trainer = Trainer(model, loss, metrics, optimizer,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_scheduler=lr_scheduler)
print('starting to train')
trainer.train()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target=('optimizer', 'args', 'lr')),
CustomArgs(['--bs', '--batch_size'], type=int, target=('data_loader', 'args', 'batch_size'))
]
global_config = ConfigParser(args, options)
main(global_config)
# test_dataloader(global_config)
# test_model_mvlm(config)
# get_cuda_info(config)