-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
167 lines (131 loc) · 6.3 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
"""Run inference a DeepLab v3 model using tf.estimator API."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tensorflow as tf
import deeplab_model
from utils import preprocessing
from utils import dataset_util
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
from scipy import misc
from tensorflow.python import debug as tf_debug
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default=None,
help='The directory containing the image data.')
parser.add_argument('--output_dir', type=str, default=None,
help='Path to the directory to generate the inference results')
parser.add_argument('--infer_data_list', type=str, default=None,
help='Path to the file listing the inferring images.')
parser.add_argument('--model_dir', type=str, default=None,
help="Base directory for the model. "
"Make sure 'model_checkpoint_path' given in 'checkpoint' file matches "
"with checkpoint name.")
parser.add_argument('--base_architecture', type=str, default='resnet_v2_50',
choices=['resnet_v2_50', 'resnet_v2_101'],
help='The architecture of base Resnet building block.')
parser.add_argument('--output_stride', type=int, default=16,
choices=[8, 16],
help='Output stride for DeepLab v3. Currently 8 or 16 is supported.')
parser.add_argument('--debug', action='store_true',
help='Whether to use debugger to track down bad values during training.')
parser.add_argument('--device', type=int, default=None)
parser.add_argument('--dataset', type=str, default='cs', choices=['kitti', 'cs'])
parser.add_argument('--ratio', type=float)
parser.add_argument('--type', type=str, choices=['sem', 'disp'])
parser.add_argument('--aux_ratio', type=float)
_NUM_CLASSES = 19
def main(unused_argv):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
if FLAGS.device != None:
os.environ["CUDA_VISIBLE_DEVICES"] = str(FLAGS.device)
pred_hooks = None
if FLAGS.debug:
debug_hook = tf_debug.LocalCLIDebugHook()
pred_hooks = [debug_hook]
model = tf.estimator.Estimator(
model_fn=deeplab_model.deeplabv3_plus_model_fn,
model_dir=FLAGS.model_dir,
params={
'output_stride': FLAGS.output_stride,
'batch_size': 1, # Batch size must be 1 because the images' size may differ
'base_architecture': FLAGS.base_architecture,
'pre_trained_model': None,
'batch_norm_decay': None,
'num_classes': _NUM_CLASSES,
'dataset': FLAGS.dataset,
'ratio': FLAGS.ratio,
'aux_ratio': FLAGS.aux_ratio,
})
examples = dataset_util.read_examples_list(FLAGS.infer_data_list)
image_files = [os.path.join(FLAGS.data_dir, filename) for filename, sem, disp in examples]
predictions = model.predict(
input_fn=lambda: preprocessing.eval_input_fn(image_files, _HEIGHT, _WIDTH),
hooks=pred_hooks)
output_dir = FLAGS.output_dir + str(FLAGS.ratio)
#
if not os.path.exists(output_dir + '/sem_' + str(FLAGS.aux_ratio)):
os.makedirs(output_dir + '/sem_' + str(FLAGS.aux_ratio))
os.makedirs(output_dir + '/disp_' + str(FLAGS.aux_ratio))
os.makedirs(output_dir + '/all_' + str(FLAGS.aux_ratio))
for pred_dict, image_path in zip(predictions, image_files):
image_basename = os.path.splitext(os.path.basename(image_path))[0]
print("generating:", image_basename)
img_out = pred_dict['image']
sem_out = pred_dict['sem_decoded']
classes_out = pred_dict['classes']
aux_classes_out = pred_dict['aux_classes']
disp_out = pred_dict['disp_decoded']
aux_sem_out = pred_dict['aux_sem_decoded']
aux_disp_out = pred_dict['aux_disp_decoded']
# Image.fromarray(img_out).save(os.path.join(output_dir + '/img', image_basename) + '.png')
if FLAGS.aux_ratio == 1:
disp_img = Image.fromarray(aux_disp_out)
else:
disp_img = Image.fromarray(disp_out)
disp_img.save(os.path.join(output_dir + '/disp'+ '_' + str(FLAGS.aux_ratio) + '/' + image_basename + '.png'))
# Image.fromarray(disp_out).resize((1226, 370)).save(
# os.path.join(output_dir + '/disp_full_size', image_basename) + '.png')
class_name = os.path.join(output_dir + '/sem' + '_' + str(FLAGS.aux_ratio) + '/' + image_basename.replace('_leftImg8bit', '_trainId') + '.png')
if FLAGS.aux_ratio == 1:
# sem_img = Image.fromarray(aux_sem_out)
# sem_classes = Image.fromarray(aux_classes_out, "P")
aux_classes_out = np.squeeze(aux_classes_out)
misc.imsave(class_name, aux_classes_out)
else:
# sem_classes = Image.fromarray(classes_out)
classes_out = np.squeeze(classes_out)
misc.imsave(class_name, classes_out)
# sem_img.save(os.path.join(output_dir + '/sem' + '_' + str(FLAGS.aux_ratio) + '/' + image_basename + '.png'))
#sem_classes.save()
# Image.fromarray(sem_out).resize((1226, 370)).save(
# os.path.join(output_dir + '/sem_full_size', image_basename) + '.png')
# disp_img = Image.open('/home/fanlei/final_version/aspp_4_up_project_silog_loss_ffix_ratio/result/kitti/05/0.0/disp_train_size/' + image_basename + '.png')
# disp_img = np.array(disp_img, dtype=np.uint8)
# Image.fromarray(np.concatenate((img_out, sem_img, disp_img))).save(os.path.join(output_dir + '/all_' + str(FLAGS.aux_ratio) + '/' + image_basename) + '.png')
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
FLAGS, unparsed = parser.parse_known_args()
if FLAGS.dataset == 'kitti':
FLAGS.data_dir = '/home/dataset/KITTI_odometry/data_odometry_color/dataset/sequences'
FLAGS.infer_data_list = '/home/dataset/KITTI_odometry/data_odometry_color/dataset/sequences/05_list.txt'
_EVAL_HEIGHT = 384
_EVAL_WIDTH = 1152
_HEIGHT = 192
_WIDTH = 624
elif FLAGS.dataset == 'cs':
_HEIGHT = 512
_WIDTH = 1024
FLAGS.data_dir = '/home/data/cityscapes/'
FLAGS.infer_data_list = '/home/fanlei/aspp_branch/aspp_4_up_project_silog_loss_ffix_ratio/data/val.txt'
_EVAL_HEIGHT = 1024
_EVAL_WIDTH = 2048
FLAGS.model_dir = '/home/fanlei/aspp_branch/aspp_4_up_project_silog_loss_ffix_ratio/model/cs/0.85/' + str(FLAGS.aux_ratio)
if FLAGS.output_dir == None:
FLAGS.output_dir = 'result/' + FLAGS.dataset +'/'
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)