-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdemo_i2i.py
89 lines (75 loc) · 3.64 KB
/
demo_i2i.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import argparse
import os
import datetime
from lib_layerdiffuse.pipeline_flux_img2img import FluxImg2ImgPipeline
from lib_layerdiffuse.vae import TransparentVAE, pad_rgb
from PIL import Image
import numpy as np
from torchvision import transforms
from safetensors.torch import load_file
from PIL import Image, ImageDraw, ImageFont
def generate_img(pipe, trans_vae, args):
original_image = (transforms.ToTensor()(Image.open(args.image))).unsqueeze(0)
padding_feed = [x for x in original_image.movedim(1, -1).float().cpu().numpy()]
list_of_np_rgb_padded = [pad_rgb(x) for x in padding_feed]
rgb_padded_bchw_01 = torch.from_numpy(np.stack(list_of_np_rgb_padded, axis=0)).float().movedim(-1, 1).to(original_image.device)
original_image_feed = original_image.clone()
original_image_feed[:, :3, :, :] = original_image_feed[:, :3, :, :] * 2.0 - 1.0
original_image_rgb = original_image_feed[:, :3, :, :] * original_image_feed[:, 3, :, :]
original_image_feed = original_image_feed.to("cuda")
original_image_rgb = original_image_rgb.to("cuda")
rgb_padded_bchw_01 = rgb_padded_bchw_01.to("cuda")
trans_vae.to(torch.device('cuda'))
rng = torch.Generator("cuda").manual_seed(args.seed)
initial_latent = trans_vae.encode(original_image_feed, original_image_rgb, rgb_padded_bchw_01, use_offset=True)
latents = pipe(
latents=initial_latent,
image=original_image,
prompt=args.prompt,
height=args.height,
width=args.width,
num_inference_steps=args.steps,
output_type="latent",
generator=rng,
guidance_scale=args.guidance,
strength=args.strength,
).images
latents = pipe._unpack_latents(latents, args.height, args.width, pipe.vae_scale_factor)
latents = (latents / pipe.vae.config.scaling_factor) + pipe.vae.config.shift_factor
with torch.no_grad():
original_x, x = trans_vae.decode(latents)
x = x.clamp(0, 1)
x = x.permute(0, 2, 3, 1)
img = Image.fromarray((x*255).float().cpu().numpy().astype(np.uint8)[0])
return img
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ckpt_path", type=str, required=True)
parser.add_argument("--trans_vae", type=str, default="./models/TransparentVAE.pth")
parser.add_argument("--output_dir", type=str, default="./flux-layer-outputs")
parser.add_argument("--dtype", type=str, default="bfloat16", help="base dtype")
parser.add_argument("--seed", type=int, default=43)
parser.add_argument("--steps", type=int, default=50)
parser.add_argument("--guidance", type=float, default=7.0)
parser.add_argument("--strength", type=float, default=0.8)
parser.add_argument("--prompt", type=str, default="a handsome man with curly hair, high quality")
parser.add_argument(
"--lora_weights",
type=str,
default="./models/layerlora.safetensors",
)
parser.add_argument("--width", type=int, default=1024)
parser.add_argument("--height", type=int, default=1024)
parser.add_argument("--image", type=str, default="./imgs/causal_cut.png")
args = parser.parse_args()
pipe = FluxImg2ImgPipeline.from_pretrained(args.ckpt_path, torch_dtype=torch.bfloat16).to('cuda')
pipe.load_lora_weights(args.lora_weights)
trans_vae = TransparentVAE(pipe.vae, pipe.vae.dtype)
trans_vae.load_state_dict(torch.load(args.trans_vae), strict=False)
print("all loaded")
img = generate_img(pipe, trans_vae, args)
# save image
os.makedirs(args.output_dir, exist_ok=True)
output_path = os.path.join(args.output_dir, f"{datetime.datetime.now().strftime('%Y%m%d_%H%M%S')}.png")
img.save(output_path)