-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodelmanager.py
59 lines (43 loc) · 2.02 KB
/
modelmanager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import numpy
class ModelManager:
blobConfig = {
"dim": (300, 300), #dimensions of the frame our model is trained on
"scale": 1.0, #scaling factor for the frame
"meanVals": (104.0, 117.0, 123.0) #mean values used for serialization
}
def __init__(self, caffeProto, caffeModel):
print("Loading caffe model...")
self.net = cv2.dnn.readNetFromCaffe(caffeProto, caffeModel)
if not self.net:
print("Failed to load caffe model")
def detectFace(self, frame, debug=False):
"""
Use opencv serialization and the caffe model to detect faces in a frame. Results are stored in data, facesCount Attributes.
Arguments:
frame {Mat} -- opencv class handeling frame data
debug {bool} -- determines if blob output should be written to frame (default: {False})
"""
resizedFrame = cv2.resize(frame, self.blobConfig["dim"])
frameBlob = cv2.dnn.blobFromImage(resizedFrame, self.blobConfig["scale"], self.blobConfig["dim"], self.blobConfig["meanVals"])
if debug:
cv2.putText(frame, "F_B: {}".format(frameBlob.shape), (5, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255))
self.net.setInput(frameBlob)
self.data = self.net.forward()
self.facesCount = self.data.shape[2]
def getConfidence(self, index):
if not self.data.any():
print("No loaded data found...")
return self.data[0, 0, index, 2]
def getFaceBounds(self, index, width, height):
"""
Returns Coordinates of the face in the given dimensions.
Arguments:
index {int} -- index of the face to get bounds for
width {int} -- width of the frame
height {int} -- height of the frame
"""
if not self.data.any():
print("No loaded data found...")
box = self.data[0, 0, index, 3:7] * numpy.array([width, height, width, height])
return box.astype("int")