@@ -38,47 +38,52 @@ def main():
3838 if not os .path .exists ("output/images" ):
3939 os .makedirs ("output/images" )
4040
41- interactome_path = Path ("./network/interactome-flybase-collapsed-weighted.txt" )
42- go_association_path = Path ("./network/fly_proGo.csv" )
41+ fly_interactome_path = Path ("./network/fly_propro.csv" )
42+ fly_go_association_path = Path ("./network/fly_proGo.csv" )
43+ zfish_interactome_path = Path ("./network/zfish_propro.csv" )
44+ zfish_go_association_path = Path ("./network/zfish_proGo.csv" )
45+ bsub_interactome_path = Path ("./network/bsub_propro.csv" )
46+ bsub_go_association_path = Path ("./network/bsub_proGo.csv" )
47+
4348 output_data_path = Path ("./output/data/" )
4449 output_image_path = Path ("./output/images/" )
4550 dataset_directory_path = Path ("./output/dataset" )
4651 graph_file_path = Path (dataset_directory_path , "graph.pickle" )
47- sample_size = 1000
52+ sample_size = 10000
4853
4954 testing_output_data_path = Path ("./output/data/" )
5055 testing_output_image_path = Path ("./output/images/" )
5156 testing_input_directory_path = Path ("./tests/testing-dataset/" )
5257 testing_graph_file_path = Path (testing_input_directory_path , "graph.pickle" )
5358
54- interactome_columns = [0 , 1 , 4 , 5 ]
55- interactome = read_specific_columns (interactome_path , interactome_columns , "\t " )
59+ interactome_columns = [0 , 1 ]
60+ interactome = read_specific_columns (zfish_interactome_path , interactome_columns , ", " )
5661
5762 go_inferred_columns = [0 , 2 ]
5863 go_protein_pairs = read_specific_columns (
59- go_association_path , go_inferred_columns , ","
64+ zfish_go_association_path , go_inferred_columns , ","
6065 )
6166
6267 protein_list = []
6368
6469 # if there is no graph.pickle file in the output/dataset directory, uncomment the following lines
65- # G, protein_list = create_ppi_network(interactome, go_protein_pairs)
66- # export_graph_to_pickle(G, graph_file_path)
70+ G , protein_list = create_ppi_network (interactome , go_protein_pairs )
71+ export_graph_to_pickle (G , graph_file_path )
6772
6873 # if there is no sample dataset, uncomment the following lines. otherwise, the dataset in outputs will be used
69- # positive_dataset, negative_dataset = sample_data(
70- # go_protein_pairs, sample_size, protein_list, G, dataset_directory_path
71- # )
74+ positive_dataset , negative_dataset = sample_data (
75+ go_protein_pairs , sample_size , protein_list , G , dataset_directory_path
76+ )
7277
7378 # Define algorithm classes and their names
7479 algorithm_classes = {
75- "OverlappingNeighbors" : OverlappingNeighbors ,
76- "OverlappingNeighborsV2" : OverlappingNeighborsV2 ,
77- "OverlappingNeighborsV3" : OverlappingNeighborsV3 ,
78- "ProteinDegree" : ProteinDegree ,
79- "ProteinDegreeV2" : ProteinDegreeV2 ,
80- "ProteinDegreeV3" : ProteinDegreeV3 ,
81- "SampleAlgorithm" : SampleAlgorithm ,
80+ # "OverlappingNeighbors": OverlappingNeighbors,
81+ # "OverlappingNeighborsV2": OverlappingNeighborsV2,
82+ # "OverlappingNeighborsV3": OverlappingNeighborsV3,
83+ # "ProteinDegree": ProteinDegree,
84+ # "ProteinDegreeV2": ProteinDegreeV2,
85+ # "ProteinDegreeV3": ProteinDegreeV3,
86+ # "SampleAlgorithm": SampleAlgorithm,
8287 "HypergeometricDistribution" : HypergeometricDistribution ,
8388 "HypergeometricDistributionV2" : HypergeometricDistributionV2 ,
8489 "HypergeometricDistributionV3" : HypergeometricDistributionV3 ,
@@ -87,10 +92,10 @@ def main():
8792
8893 results = run_workflow (
8994 algorithm_classes ,
90- testing_input_directory_path ,
91- testing_graph_file_path ,
92- testing_output_data_path ,
93- testing_output_image_path ,
95+ dataset_directory_path ,
96+ graph_file_path ,
97+ output_data_path ,
98+ output_image_path ,
9499 True ,
95100 True ,
96101 )
0 commit comments