-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm.py
214 lines (176 loc) · 7.53 KB
/
llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.nn.functional as F
import torch.nn as nn
@dataclass
class ModelArgs:
dim: int = 2560
n_layers: int = 28
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = 32000
multiple_of: int = 256 # hacer que el tamaño de la capa oculta de SwiGLU sea múltiplo de una gran potencia de 2
ffn_dim_multiplier: Optional[float] = None
norm_eps: float = 1e-5
rope_theta: float = 500000
max_batch_size: int = 5
max_seq_len: int = 2048
dropout: float = 0.1
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
self.n_heads = args.n_heads
self.n_rep = self.n_heads // self.n_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(
args.dim,
args.n_heads * self.head_dim,
bias=False
)
self.wk = nn.Linear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=False
)
self.wv = nn.Linear(
args.dim,
self.n_kv_heads * self.head_dim,
bias=False
)
self.wo = nn.Linear(
args.n_heads * self.head_dim,
args.dim,
bias=False
)
self.dropout = nn.Dropout(args.dropout)
def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
bsz, seqlen, _ = x.shape
# Proyecciones QKV
xq = self.wq(x).view(bsz, seqlen, self.n_heads, self.head_dim)
xk = self.wk(x).view(bsz, seqlen, self.n_kv_heads, self.head_dim)
xv = self.wv(x).view(bsz, seqlen, self.n_kv_heads, self.head_dim)
# Aplicar RoPE a Q y K
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
# Repetir K y V si es necesario
if self.n_rep > 1:
xk = xk.repeat_interleave(self.n_rep, dim=2)
xv = xv.repeat_interleave(self.n_rep, dim=2)
# Reordenar para atención
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# Calcular scores
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores + mask.unsqueeze(0).unsqueeze(0)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.dropout(scores)
# Aplicar atención
output = torch.matmul(scores, xv)
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
return self.wo(output)
class FeedForward(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
hidden_dim = int(2 * args.dim / 3)
if args.ffn_dim_multiplier is not None:
hidden_dim = int(args.ffn_dim_multiplier * hidden_dim)
hidden_dim = args.multiple_of * ((hidden_dim + args.multiple_of - 1) // args.multiple_of)
self.w1 = nn.Linear(args.dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, args.dim, bias=False)
self.w3 = nn.Linear(args.dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(args.dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.attention = Attention(args)
self.feed_forward = FeedForward(args)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.dropout = nn.Dropout(args.dropout)
def forward(self, x: torch.Tensor, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
h = x + self.dropout(self.attention(self.attention_norm(x), freqs_cis, mask))
out = h + self.dropout(self.feed_forward(self.ffn_norm(h)))
return out
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(
params.vocab_size, params.dim
)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(
params.dim, params.vocab_size, bias=False
)
self.register_buffer("freqs_cis", precompute_freqs_cis(
params.dim // params.n_heads, params.max_seq_len * 2, params.rope_theta
))
def forward(self, tokens: torch.Tensor, labels: Optional[torch.Tensor] = None):
bsz, seqlen = tokens.shape
# Obtener embeddings
h = self.dropout(self.tok_embeddings(tokens))
# Preparar frecuencias para RoPE
freqs_cis = self.freqs_cis[:seqlen]
# Crear máscara causal
mask = None
if seqlen > 1:
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
mask = torch.triu(mask, diagonal=1)
# Pasar por todas las capas
for layer in self.layers:
h = layer(h, freqs_cis, mask)
h = self.norm(h)
logits = self.output(h)
# Si estamos entrenando, calcular la pérdida
if labels is not None:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
loss = F.cross_entropy(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
ignore_index=-100
)
return logits, loss
return logits