-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreparedata.py
147 lines (126 loc) · 5.35 KB
/
preparedata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
from tqdm import tqdm
import numpy as np
from datasets import load_dataset
from pathlib import Path
from transformers import AutoTokenizer
class DataPreparation:
def __init__(
self,
model_name: str = "meta-llama/Llama-3.1-8B",
max_seq_length: int = 2048,
num_proc: int = 8,
output_dir: str = "data",
val_size: float = 0.0005,
):
self.max_seq_length = max_seq_length
self.num_proc = num_proc
self.output_dir = Path(output_dir)
self.val_size = val_size
self.output_dir.mkdir(exist_ok=True, parents=True)
# Inicializar tokenizador usando AutoTokenizer
self.init_tokenizer(model_name)
def init_tokenizer(self, model_name: str):
"""
Inicializa el tokenizer desde el modelo pre-entrenado
"""
print(f"Cargando tokenizer desde {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.vocab_size = self.tokenizer.vocab_size
def process(self, example):
"""Procesar un ejemplo del dataset"""
tokens = self.tokenizer.encode(
example['text'],
add_special_tokens=True,
padding=False,
truncation=True,
max_length=self.max_seq_length
)
return {
'ids': tokens,
'len': len(tokens)
}
def prepare_dataset(self):
"""Preparar el dataset completo"""
print("Cargando dataset...")
dataset = load_dataset("openwebtext", num_proc=self.num_proc)
dataset = dataset['train'].select(range(8197))
# Split train/val
split_dataset = dataset.train_test_split(
test_size=self.val_size,
seed=2357,
shuffle=True
)
split_dataset['val'] = split_dataset.pop('test')
print("Tokenizando datos...")
tokenized = split_dataset.map(
self.process,
remove_columns=['text'],
desc="Tokenizando",
num_proc=self.num_proc
)
# Guardar en archivos binarios
for split, dset in tokenized.items():
arr_len = np.sum(dset['len'], dtype=np.uint64)
filename = self.output_dir / f'{split}.bin'
print(f"Guardando {split}.bin...")
dtype = np.uint16
arr = np.memmap(str(filename), dtype=dtype, mode='w+', shape=(arr_len,))
idx = 0
if len(dset) < 1024:
batch = dset.with_format('numpy')
arr_batch = np.concatenate(batch['ids'])
arr[idx:idx + len(arr_batch)] = arr_batch
else:
# Procesar en shards para datasets grandes
total_batches = 1024
for batch_idx in tqdm(range(total_batches), desc=f'Escribiendo {filename}'):
batch = dset.shard(
num_shards=total_batches,
index=batch_idx,
contiguous=True
).with_format('numpy')
arr_batch = np.concatenate(batch['ids'])
arr[idx:idx + len(arr_batch)] = arr_batch
idx += len(arr_batch)
arr.flush()
# Guardar metadatos
meta = {
'total_tokens': arr_len,
'vocab_size': self.vocab_size,
'max_seq_length': self.max_seq_length,
'tokenizer_config': {
'vocab_size': self.tokenizer.vocab_size,
'max_length': self.max_seq_length,
'special_tokens': self.tokenizer.special_tokens_map
}
}
np.save(str(self.output_dir / f'{split}_meta.npy'), meta)
print("\nEstadísticas del dataset:")
print(f"Tamaño de vocabulario: {self.vocab_size}")
print(f"Longitud máxima de secuencia: {self.max_seq_length}")
for split in ['train', 'val']:
meta = np.load(str(self.output_dir / f'{split}_meta.npy'), allow_pickle=True).item()
total_tokens = meta['total_tokens']
print(f"\n{split.capitalize()}:")
print(f"Total tokens: {total_tokens:,}")
print(f"Tamaño archivo: {os.path.getsize(self.output_dir / f'{split}.bin') / 1e9:.2f} GB")
def main():
import argparse
parser = argparse.ArgumentParser(description="Preparar dataset para entrenamiento")
parser.add_argument("--model-name", type=str, default="meta-llama/Llama-3.1-8B", help="Nombre del modelo pre-entrenado")
parser.add_argument("--max-seq-length", type=int, default=2048, help="Longitud máxima de secuencia")
parser.add_argument("--num-proc", type=int, default=8, help="Número de procesos")
parser.add_argument("--output-dir", type=str, default="data", help="Directorio de salida")
parser.add_argument("--val-size", type=float, default=0.0005, help="Tamaño del conjunto de validación")
args = parser.parse_args()
data_prep = DataPreparation(
model_name=args.model_name,
max_seq_length=args.max_seq_length,
num_proc=args.num_proc,
output_dir=args.output_dir,
val_size=args.val_size
)
data_prep.prepare_dataset()
if __name__ == '__main__':
main()