-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
212 lines (159 loc) · 7.26 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Dense, Activation, Flatten
from keras.layers import LeakyReLU, Concatenate, Input
from keras import optimizers
from keras.utils import plot_model
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import keras
import pandas as pd
import numpy as np
import cv2
import os
import time
import pickle
import random
# ########################################################
# init DF for training data
df = pd.read_csv('velocity_labels.csv',\
names = ['image', 'velocity', 'steering_angle', 'outcome'],\
converters = {'image': lambda x: str(x), 'outcome': lambda x: '1' if x.strip() == 'good' else '0',\
'steering_angle': lambda x: round(float(x)/70, 8),\
'velocity': lambda x: round(float(x.strip()), 8)})
df['normal_velocity'] = round(((df['velocity'] - min(df['velocity']))/ (max(df['velocity']) - min(df['velocity']))), 8)
df['normal_steering_angle'] = round(((df['steering_angle'] - min(df['steering_angle']))/ (max(df['steering_angle']) - min(df['steering_angle']))), 8)
# #########################################################
# Saving normalised training data to csv
df.to_csv('normal_dataset.csv', encoding='utf-8', index=False)
print (df.tail()) # DEBUG
# ########################################################
# init DF for test data
test_df = pd.read_csv('test_labels.csv',\
names = ['image', 'velocity', 'steering_angle', 'outcome'],\
converters = {'image': lambda x: str(x).strip(), 'outcome': lambda x: '1' if x.strip() == 'good' else '0',\
'steering_angle': lambda x: round(float(x)/70, 8),\
'velocity': lambda x: round(float(x.strip()), 8)})
test_df['normal_velocity'] = round(((test_df['velocity'] - min(test_df['velocity']))/ (max(test_df['velocity']) - min(test_df['velocity']))), 8)
test_df['normal_steering_angle'] = round(((test_df['steering_angle'] - min(test_df['steering_angle']))/ (max(test_df['steering_angle']) - min(test_df['steering_angle']))), 8)
# ########################################################
# PARAMETERS
BS = 600 # batch size
validation_split = 0.01
batch_per_epoch = np.ceil(len(df['image']) / BS).astype(int)
epochs = 40
alpha = 0.01
lr = 0.00001
mom = 0.000002
optimizer = 'SGD'
# ########################################################
# Create training data labels and target
def training_gen():
while True:
training_data = []
for img, velocity, angle, outcome, normal_v, normal_angle in df.values:
try:
if len(training_data) != BS:
image = cv2.imread(f"smaller_training_images/{img}.png", 1)
#image = cv2.resize(image, (400,400))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# plt.imshow(image)
# plt.show()
training_data.append([image, angle, normal_v])
else:
X = [image for image, angle, normal_v in training_data]
other_inp = [normal_v for image, angle, normal_v in training_data]
Y = [angle for image, angle, normal_v in training_data]
training_data = []
X = (np.array(image)/255.).reshape(-1, 300,250,3)
Y = np.array([angle])
other_inp = np.array([velocity])
yield [X, other_inp], [Y]
except cv2.error:
pass
# ########################################################
# Create test data labels and target
test_data = []
_iterator_obj = list(zip(df['image'], df['steering_angle'], df['outcome'], df['normal_velocity']))
random.shuffle(_iterator_obj)
for img, angle, outcome, velocity in _iterator_obj:
try:
if len(test_data) == int(len(df['image']) * validation_split):
break
test_image = cv2.imread(f"smaller_training_images/{img}.png", 1)
#test_image = cv2.resize(test_image, (400,400))
test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB)
# plt.imshow(image)
# plt.show()
if outcome == '1':
test_data.append([test_image, angle, velocity])
except cv2.error:
pass
test_X = [img for img, label, velocity in test_data]
test_Y = [label for img, label, velocity in test_data]
test_other_inp = [velocity for img, label, velocity in test_data]
test_X = np.array(test_X).reshape(-1, 300,250,3)
test_Y = np.array(test_Y)
test_other_inp = np.array(test_other_inp)
print(test_other_inp.shape)
# ########################################################
# Create Model
def create_model():
# model = Sequential()
input1 = Input(shape=(300,250,3))
# model.add(Flatten(input_shape = (940,940,3)))
conv1 = Conv2D(36, (3, 3), strides=(2, 2), padding='same')(input1)
activ1 =LeakyReLU(alpha=alpha)(conv1)
pool1 =MaxPooling2D(pool_size=(2, 2), padding='valid')(activ1)
conv2 = Conv2D(25, (3, 3), strides=(2, 2), padding='same')(pool1)
activ2 =LeakyReLU(alpha=alpha)(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2), padding='valid')(activ2)
conv3 = Conv2D(16, (3, 3), strides=(2, 2), padding='same')(pool2)
activ3 = LeakyReLU(alpha=alpha)(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2), padding='valid')(activ3)
# conv4 = Conv2D(9, (3, 3), strides=(1, 1), padding='valid')(pool3)
# activ4 = LeakyReLU(alpha=alpha)(conv4)
#pool4 = MaxPooling2D(pool_size=(1, 1), padding='valid')(activ4)
# conv5 = Conv2D(4, (3, 3), strides=(1, 1), padding='valid')(activ4)
# activ5 = LeakyReLU(alpha=alpha)(conv5)
#pool5 = MaxPooling2D(pool_size=(1, 1))(activ5)
flat1 = Flatten()(pool3)
input2 = Input(shape = (1, ))
concat1 = Concatenate(axis=1)([flat1, input2])
dense1 = Dense(1164, activation='tanh')(concat1)
dense2 = Dense(500, activation='tanh')(dense1)
dense3 = Dense(200, activation='tanh')(dense2)
dense4 = Dense(1, activation='tanh')(dense3)
#activ6 = Activation('softmax')(dense4)
model = Model(inputs = [input1, input2], outputs = dense4)
model.compile(loss='mean_squared_error',
metrics=['accuracy', 'mae', 'mse'], optimizer=optimizer)
optimizers.SGD(lr=lr, momentum=mom)
#optimizers.RMSprop(lr=lr)
#history = model.fit([X, other_inp], Y, batch_size= 40, epochs = 50, validation_data=([test_X, test_other_inp], test_Y))
history = model.fit_generator(training_gen(),
steps_per_epoch=batch_per_epoch,
epochs=epochs,
validation_data=([test_X, test_other_inp], test_Y))
return (history, model)
# ############################################################
# Call Function
history, model = create_model()
mse = history.history['mean_squared_error']
mae = history.history['mean_absolute_error']
acc = history.history['acc']
loss = history.history['loss']
print(f'''
mse: {min(mse)}
mae: {min(mae)}
acc: {max(acc)}''')
model.summary()
plot_model(model, show_shapes=True, show_layer_names=False)
# Dump the model to the pickle file
with open('model.pickle', 'wb') as output:
pickle.dump(model, output)
loss_graph = plt.plot(loss)
plt.title(f'MSE of {round(float(loss[-1]), 6)} over {epochs} epochs with {optimizer} optimizer \nand 3 hidden conv layers')
plt.show()
with open(f'results/{optimizer}_3.txt', 'a') as f:
print(loss, file = f)