-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
68 lines (49 loc) · 1.86 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import cv2
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import pickle
predict = True
# open model file
with open('model.pickle', 'rb') as input_file:
model = pickle.load(input_file)
df = pd.read_csv('test_labels.csv',\
names = ['image', 'velocity', 'steering_angle', 'outcome'],\
converters = {'image': lambda x: str(x),\
'steering_angle': lambda x: round(float(x)/70, 5)})
df['normal_velocity'] = round(((df['velocity'] - min(df['velocity']))/ (max(df['velocity']) - min(df['velocity']))), 8)
predicted_angle=[]
actual_angle = []
evaluate_data = []
for img, velocity, angle in zip(df['image'], df['normal_velocity'], df['steering_angle']):
try:
test_img = cv2.imread(f'small_test_images/{img}.png', 1)
test_img = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
test_img = np.array(test_img)
# test_img = test_img.flatten()
if predict:
test_input = test_img.reshape(-1, 400, 400, 3)
results = model.predict([test_input, np.array([velocity])])
predicted_angle.append(results[0][0])
actual_angle.append(angle)
print(img, results, angle)
else:
evaluate_data.append([test_img, velocity, angle])
except cv2.error:
pass
if not predict:
test_X = [img for img, label, velocity in evaluate_data]
test_Y = [label for img, label, velocity in evaluate_data]
test_other_inp = [velocity for img, label, velocity in evaluate_data]
test_X = np.array(test_X).reshape(-1, 400,400,3)
test_Y = np.array(test_Y)
test_other_inp = np.array(test_other_inp)
print(model.evaluate([test_X, test_other_inp], test_Y))
print(model.metrics)
else:
plot1 = plt.plot(predicted_angle)
plot2 = plt.plot(actual_angle)
plt.setp(plot2, color='r')
plt.show()