-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl_test.py
121 lines (91 loc) · 2.76 KB
/
rl_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
Created on Tue April 24 21:07 2018
@author: hanxy
"""
from maze_env import Maze
from rl import *
RL_EPISODE = 10
def q_update():
for episode in range(RL_EPISODE):
print "Episode %d" % episode
# initial observation
observation = env.reset()
while True:
# fresh env
env.render()
# choose action
action = RL.choose_action(str(observation))
# make action
observation_, reward, done = env.step(action)
# learn
RL.learn(str(observation), action, reward,
str(observation_))
# update observation
observation = observation_
if done:
break
print 'Game Over'
print RL.q_table
env.destroy()
def sarsa_update():
for episode in range(RL_EPISODE):
print "Episode %d" %(episode)
# initial observation
observation = env.reset()
action = RL.choose_action(str(observation))
while True:
# fresh env
env.render()
# choose action
action_ = RL.choose_action(str(observation))
# make action
observation_, reward, done = env.step(action)
# learn
RL.learn(str(observation), action, reward,
str(observation_), action_)
# update observation
observation = observation_
action = action_
if done:
break
print 'Game Over'
print RL.q_table
env.destroy()
def sarsa_lambda_update():
for episode in range(RL_EPISODE):
print "Episode %d" %(episode)
# initial observation
observation = env.reset()
action = RL.choose_action(str(observation))
RL.eligibility_trace *= 0
while True:
# fresh env
env.render()
# choose action
action_ = RL.choose_action(str(observation))
# make action
observation_, reward, done = env.step(action)
# learn
RL.learn(str(observation), action, reward,
str(observation_), action_)
# update observation
observation = observation_
action = action_
if done:
break
print 'Game Over'
print RL.q_table
env.destroy()
if __name__ == '__main__':
env = Maze()
RL = QLearning(actions=list(range(env.n_actions)))
env.after(100, q_update)
env.mainloop()
env = Maze()
RL = Sarsa(actions=list(range(env.n_actions)))
env.after(100, sarsa_update)
env.mainloop()
env = Maze()
RL = SarsaLambda(actions=list(range(env.n_actions)))
env.after(100, sarsa_lambda_update)
env.mainloop()