Skip to content

Commit 9ddcb1a

Browse files
committed
Lab 4 - Spark Mlib, Twitter streaming word count
1 parent bbd719f commit 9ddcb1a

File tree

177 files changed

+1107
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

177 files changed

+1107
-0
lines changed

Lab/Lab4/Source/Absenteeism_at_work.csv

Lines changed: 741 additions & 0 deletions
Large diffs are not rendered by default.

Lab/Lab4/Source/DecisionTree.py

Lines changed: 77 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,77 @@
1+
from pyspark.ml import Pipeline
2+
from pyspark.ml.classification import DecisionTreeClassifier
3+
from pyspark.ml.feature import StringIndexer, VectorIndexer, VectorAssembler
4+
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
5+
6+
from sklearn.metrics import confusion_matrix
7+
from sklearn.metrics import precision_score
8+
from sklearn.metrics import recall_score
9+
import scipy
10+
import os
11+
os.environ["SPARK_HOME"] = "C:\\spark-2.3.1-bin-hadoop2.7\\spark-2.3.1-bin-hadoop2.7"
12+
os.environ["HADOOP_HOME"] = "C:\\winutils\\"
13+
14+
from pyspark.python.pyspark.shell import spark
15+
16+
data = spark.read.load("Absenteeism_at_work.csv", format="csv", header=True, delimiter=",")
17+
data = data.withColumn("MOA", data["Month of absence"] - 0).withColumn("label", data['Height'] - 0). \
18+
withColumn("ROA", data["Reason for absence"] - 0). \
19+
withColumn("distance", data["Distance from Residence to Work"] - 0). \
20+
withColumn("BMI", data["Body mass index"] - 0)
21+
#data.show()
22+
23+
assem = VectorAssembler(inputCols=["label", "distance"], outputCol='features')
24+
data = assem.transform(data)
25+
26+
# Index labels, adding metadata to the label column.
27+
# Fit on whole dataset to include all labels in index.
28+
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
29+
# Automatically identify categorical features, and index them.
30+
# We specify maxCategories so features with > 4 distinct values are treated as continuous.
31+
featureIndexer =\
32+
VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
33+
34+
# Split the data into training and test sets (30% held out for testing)
35+
(trainingData, testData) = data.randomSplit([0.7, 0.3])
36+
37+
# Train a DecisionTree model.
38+
dt = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
39+
40+
# Chain indexers and tree in a Pipeline
41+
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, dt])
42+
43+
# Train model. This also runs the indexers.
44+
model = pipeline.fit(trainingData)
45+
46+
# Make predictions.
47+
predictions = model.transform(testData)
48+
49+
# Select example rows to display.
50+
predictions.select("prediction", "indexedLabel", "features").show(5)
51+
52+
# Select (prediction, true label) and compute test error
53+
evaluator = MulticlassClassificationEvaluator(
54+
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
55+
56+
accuracy = evaluator.evaluate(predictions)
57+
58+
y_true = data.select("BMI").rdd.flatMap(lambda x: x).collect()
59+
y_pred = data.select("ROA").rdd.flatMap(lambda x: x).collect()
60+
61+
confusionmatrix = confusion_matrix(y_true, y_pred)
62+
63+
precision = precision_score(y_true, y_pred, average='micro')
64+
65+
recall = recall_score(y_true, y_pred, average='micro')
66+
67+
treeModel = model.stages[2]
68+
# summary only
69+
print(treeModel)
70+
print("Decision Tree - Test Accuracy = %g" % (accuracy))
71+
print("Decision Tree - Test Error = %g" % (1.0 - accuracy))
72+
73+
print("The Confusion Matrix for Decision Tree Model is :\n" + str(confusionmatrix))
74+
75+
print("The precision score for Decision Tree Model is: " + str(precision))
76+
77+
print("The recall score for Decision Tree Model is: " + str(recall))

Lab/Lab4/Source/NaiveBayes.py

Lines changed: 65 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,65 @@
1+
import os
2+
import numpy as np
3+
from pyspark.ml.feature import VectorAssembler
4+
from sklearn.metrics import confusion_matrix
5+
from sklearn.metrics import precision_score
6+
from sklearn.metrics import recall_score
7+
import scipy
8+
os.environ["SPARK_HOME"] = "C:\\spark-2.3.1-bin-hadoop2.7\\spark-2.3.1-bin-hadoop2.7"
9+
os.environ["HADOOP_HOME"] = "C:\\winutils\\"
10+
from pyspark.ml.classification import NaiveBayes
11+
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
12+
13+
# import numpy
14+
# Load training data
15+
from pyspark.ml.linalg import SparseVector
16+
# from pyspark.python.pyspark.shell import spark
17+
from pyspark.sql import SparkSession
18+
spark = SparkSession.builder.getOrCreate()
19+
data = spark.read.load("Absenteeism_at_work.csv", format="csv", header=True, delimiter=",")
20+
data = data.withColumn("MOA", data["Month of absence"] - 0).withColumn("label", data['Seasons'] - 0). \
21+
withColumn("ROA", data["Reason for absence"] - 0). \
22+
withColumn("distance", data["Distance from Residence to Work"] - 0). \
23+
withColumn("BMI", data["Body mass index"] - 0)
24+
25+
assem = VectorAssembler(inputCols=["label", "MOA"], outputCol='features')
26+
27+
data = assem.transform(data)
28+
# Split the data into train and test
29+
splits = data.randomSplit([0.7, 0.3], 1000)
30+
train = splits[0]
31+
test = splits[1]
32+
33+
# create the trainer and set its parameters
34+
nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
35+
36+
# train the model
37+
model = nb.fit(train)
38+
39+
# select example rows to display.
40+
predictions = model.transform(test)
41+
42+
# compute accuracy on the test set
43+
evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction",
44+
metricName="accuracy")
45+
46+
y_true = data.select("BMI").rdd.flatMap(lambda x: x).collect()
47+
y_pred = data.select("ROA").rdd.flatMap(lambda x: x).collect()
48+
49+
50+
accuracy = evaluator.evaluate(predictions)
51+
52+
confusionmatrix = confusion_matrix(y_true, y_pred)
53+
54+
precision = precision_score(y_true, y_pred, average='micro')
55+
56+
recall = recall_score(y_true, y_pred, average='micro')
57+
58+
59+
print("Naive Bayes - Test set accuracy = " + str(accuracy))
60+
61+
print("The Confusion Matrix for Naive Bayes Model is :\n" + str(confusionmatrix))
62+
63+
print("The precision score for Naive Bayes Model is: " + str(precision))
64+
65+
print("The recall score for Naive Bayes Model is: " + str(recall))

Lab/Lab4/Source/RandomForest.py

Lines changed: 82 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,82 @@
1+
from pyspark.ml import Pipeline
2+
from pyspark.ml.classification import RandomForestClassifier
3+
from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer, VectorAssembler
4+
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
5+
6+
from sklearn.metrics import confusion_matrix
7+
from sklearn.metrics import precision_score
8+
from sklearn.metrics import recall_score
9+
import os
10+
os.environ["SPARK_HOME"] = "C:\\spark-2.3.1-bin-hadoop2.7\\spark-2.3.1-bin-hadoop2.7"
11+
os.environ["HADOOP_HOME"] = "C:\\winutils\\"
12+
# Load and parse the data file, converting it to a DataFrame.
13+
from pyspark.python.pyspark.shell import spark
14+
15+
data = spark.read.load("Absenteeism_at_work.csv", format="csv", header=True, delimiter=",")
16+
17+
data = data.withColumn("MOA", data["Month of absence"] - 0).withColumn("label", data['Transportation expense'] - 0). \
18+
withColumn("ROA", data["Reason for absence"] - 0). \
19+
withColumn("distance", data["Distance from Residence to Work"] - 0). \
20+
withColumn("BMI", data["Body mass index"] - 0)
21+
22+
# Index labels, adding metadata to the label column.
23+
# Fit on whole dataset to include all labels in index.
24+
25+
assem = VectorAssembler(inputCols=["label", "distance"], outputCol='features')
26+
27+
data = assem.transform(data)
28+
29+
labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
30+
31+
# Automatically identify categorical features, and index them.
32+
# Set maxCategories so features with > 4 distinct values are treated as continuous.
33+
featureIndexer =\
34+
VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
35+
36+
# Split the data into training and test sets (30% held out for testing)
37+
(trainingData, testData) = data.randomSplit([0.7, 0.3])
38+
39+
# Train a RandomForest model.
40+
rf = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", numTrees=10)
41+
42+
# Convert indexed labels back to original labels.
43+
labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",
44+
labels=labelIndexer.labels)
45+
46+
y_true = data.select("BMI").rdd.flatMap(lambda x: x).collect()
47+
y_pred = data.select("ROA").rdd.flatMap(lambda x: x).collect()
48+
49+
# Chain indexers and forest in a Pipeline
50+
pipeline = Pipeline(stages=[labelIndexer, featureIndexer, rf, labelConverter])
51+
52+
# Train model. This also runs the indexers.
53+
model = pipeline.fit(trainingData)
54+
55+
# Make predictions.
56+
predictions = model.transform(testData)
57+
58+
# Select example rows to display.
59+
predictions.select("predictedLabel", "label", "features").show(5)
60+
61+
# Select (prediction, true label) and compute test error
62+
evaluator = MulticlassClassificationEvaluator(
63+
labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
64+
65+
accuracy = evaluator.evaluate(predictions)
66+
67+
confusionmatrix = confusion_matrix(y_true, y_pred)
68+
69+
precision = precision_score(y_true, y_pred, average='micro')
70+
71+
recall = recall_score(y_true, y_pred, average='micro')
72+
73+
rfModel = model.stages[2]
74+
print(rfModel) # summary only
75+
print("Random Forest - Test Accuracy = %g" % (accuracy))
76+
print("Random Forest - Test Error = %g" % (1.0 - accuracy))
77+
78+
print("The Confusion Matrix for Random Forest Model is :\n" + str(confusionmatrix))
79+
80+
print("The precision score for Random Forest Model is: " + str(precision))
81+
82+
print("The recall score for Random Forest Model is: " + str(recall))

Lab/Lab4/Source/TSWordCount.py

Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
from pyspark import SparkContext
2+
from pyspark.streaming import StreamingContext
3+
from pyspark.sql.functions import desc
4+
from collections import namedtuple
5+
import os
6+
os.environ["SPARK_HOME"] = "C:\\spark-2.3.1-bin-hadoop2.7\\spark-2.3.1-bin-hadoop2.7"
7+
os.environ["HADOOP_HOME"] = "C:\\winutils\\"
8+
9+
def main():
10+
sc = SparkContext(appName="PysparkStreaming")
11+
wordcount = {}
12+
ssc = StreamingContext(sc, 5)
13+
lines = ssc.socketTextStream("localhost", 1234)
14+
fields = ("word", "count")
15+
Tweet = namedtuple('Text', fields)
16+
# lines = socket_stream.window(20)
17+
counts = lines.flatMap(lambda text: text.split(" "))\
18+
.map(lambda x: (x, 1))\
19+
.reduceByKey(lambda a, b: a + b).map(lambda rec: Tweet(rec[0], rec[1]))
20+
counts.pprint()
21+
ssc.start()
22+
ssc.awaitTermination()
23+
24+
if __name__ == "__main__":
25+
main()

Lab/Lab4/Source/TwitterListener.py

Lines changed: 56 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,56 @@
1+
import tweepy
2+
from tweepy import OAuthHandler
3+
from tweepy import Stream
4+
from tweepy.streaming import StreamListener
5+
import socket
6+
import json
7+
import time
8+
9+
consumer_key = 'mSg1xMRSz8a8EqPY1sHcE0FPo'
10+
consumer_secret = 'VfalDVqLVhJ4CQb15Qb7YTx2hgkfPtpO6ogm6Vz07iIR7TqAaN'
11+
access_token = '3240653721-pmylXVMr6dX32S0omzX4hptZI2a2Aj79Popop7P'
12+
access_secret = 'DR8D9bYt2aZeh9jt8pugStIMMipZ9muS2oDsRT34MKxw3'
13+
14+
15+
auth = OAuthHandler(consumer_key, consumer_secret)
16+
auth.set_access_token(access_token, access_secret)
17+
18+
class TweetsListener(StreamListener):
19+
20+
def __init__(self, csocket):
21+
self.client_socket = csocket
22+
23+
def on_data(self, data):
24+
try:
25+
msg = json.loads(data)
26+
print(msg['text'].encode('utf-8'))
27+
self.client_socket.send(msg['text'].encode('utf-8'))
28+
return True
29+
except BaseException as e:
30+
print("Error on_data: %s" % str(e))
31+
return True
32+
33+
def on_error(self, status):
34+
print(status)
35+
return True
36+
37+
38+
def sendData(c_socket):
39+
auth = OAuthHandler(consumer_key, consumer_secret)
40+
auth.set_access_token(access_token, access_secret)
41+
42+
twitter_stream = Stream(auth, TweetsListener(c_socket))
43+
twitter_stream.filter(track=['fifa'])
44+
45+
46+
if __name__ == "__main__":
47+
s = socket.socket() # Create a socket object
48+
host = "localhost" # Get local machine name
49+
port = 1234 # Reserve a port for your service.
50+
s.bind((host, port)) # Bind to the port
51+
print("Listening on port: %s" % str(port))
52+
s.listen(5) # Now wait for client connection.
53+
c, addr = s.accept() # Establish connection with client.
54+
print("Received request from: " + str(addr))
55+
time.sleep(5)
56+
sendData(c)

Lab/Lab4/Source/derby.log

Lines changed: 13 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,13 @@
1+
----------------------------------------------------------------
2+
Fri Jul 27 12:03:24 CDT 2018:
3+
Booting Derby version The Apache Software Foundation - Apache Derby - 10.12.1.1 - (1704137): instance a816c00e-0164-dcb1-e9dd-00000d7b2d68
4+
on database directory C:\Users\ruthv\PycharmProjects\CS5590_BigDataProgramming\Spark_Python_Code\LAB4\New\metastore_db with class loader org.apache.spark.sql.hive.client.IsolatedClientLoader$$anon$1@74ed851c
5+
Loaded from file:/C:/spark-2.3.1-bin-hadoop2.7/spark-2.3.1-bin-hadoop2.7/jars/derby-10.12.1.1.jar
6+
java.vendor=Oracle Corporation
7+
java.runtime.version=1.8.0_162-b12
8+
user.dir=C:\Users\ruthv\PycharmProjects\CS5590_BigDataProgramming\Spark_Python_Code\LAB4\New
9+
os.name=Windows 10
10+
os.arch=amd64
11+
os.version=10.0
12+
derby.system.home=null
13+
Database Class Loader started - derby.database.classpath=''
Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,9 @@
1+
2+
# *************************************************************************
3+
# *** DO NOT TOUCH FILES IN THIS DIRECTORY! ***
4+
# *** FILES IN THIS DIRECTORY AND SUBDIRECTORIES CONSTITUTE A DERBY ***
5+
# *** DATABASE, WHICH INCLUDES THE DATA (USER AND SYSTEM) AND THE ***
6+
# *** FILES NECESSARY FOR DATABASE RECOVERY. ***
7+
# *** EDITING, ADDING, OR DELETING ANY OF THESE FILES MAY CAUSE DATA ***
8+
# *** CORRUPTION AND LEAVE THE DATABASE IN A NON-RECOVERABLE STATE. ***
9+
# *************************************************************************

Lab/Lab4/Source/metastore_db/db.lck

38 Bytes
Binary file not shown.
Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
2+
# *************************************************************************
3+
# *** DO NOT TOUCH FILES IN THIS DIRECTORY! ***
4+
# *** FILES IN THIS DIRECTORY ARE USED BY THE DERBY DATABASE RECOVERY ***
5+
# *** SYSTEM. EDITING, ADDING, OR DELETING FILES IN THIS DIRECTORY ***
6+
# *** WILL CAUSE THE DERBY RECOVERY SYSTEM TO FAIL, LEADING TO ***
7+
# *** NON-RECOVERABLE CORRUPT DATABASES. ***
8+
# *************************************************************************
48 Bytes
Binary file not shown.
1 MB
Binary file not shown.
48 Bytes
Binary file not shown.
Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
2+
# *************************************************************************
3+
# *** DO NOT TOUCH FILES IN THIS DIRECTORY! ***
4+
# *** FILES IN THIS DIRECTORY ARE USED BY THE DERBY DATABASE TO STORE ***
5+
# *** USER AND SYSTEM DATA. EDITING, ADDING, OR DELETING FILES IN THIS ***
6+
# *** DIRECTORY WILL CORRUPT THE ASSOCIATED DERBY DATABASE AND MAKE ***
7+
# *** IT NON-RECOVERABLE. ***
8+
# *************************************************************************
8 KB
Binary file not shown.
8 KB
Binary file not shown.
16 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
20 KB
Binary file not shown.
20 KB
Binary file not shown.
16 KB
Binary file not shown.
80 KB
Binary file not shown.
16 KB
Binary file not shown.
16 KB
Binary file not shown.
16 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
100 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
312 KB
Binary file not shown.
8 KB
Binary file not shown.
20 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
24 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
32 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
24 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
12 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
72 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
64 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
68 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
16 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
8 KB
Binary file not shown.
16 KB
Binary file not shown.
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
#C:\Users\ruthv\PycharmProjects\CS5590_BigDataProgramming\Spark_Python_Code\LAB4\New\metastore_db
2+
# ********************************************************************
3+
# *** Please do NOT edit this file. ***
4+
# *** CHANGING THE CONTENT OF THIS FILE MAY CAUSE DATA CORRUPTION. ***
5+
# ********************************************************************
6+
#Fri Jul 27 08:44:04 CDT 2018
7+
SysschemasIndex2Identifier=225
8+
SyscolumnsIdentifier=144
9+
SysconglomeratesIndex1Identifier=49
10+
SysconglomeratesIdentifier=32
11+
SyscolumnsIndex2Identifier=177
12+
SysschemasIndex1Identifier=209
13+
SysconglomeratesIndex3Identifier=81
14+
SystablesIndex2Identifier=129
15+
SyscolumnsIndex1Identifier=161
16+
derby.serviceProtocol=org.apache.derby.database.Database
17+
SysschemasIdentifier=192
18+
derby.storage.propertiesId=16
19+
SysconglomeratesIndex2Identifier=65
20+
derby.serviceLocale=en_US
21+
SystablesIdentifier=96
22+
SystablesIndex1Identifier=113
23+
#--- last line, don't put anything after this line ---

0 commit comments

Comments
 (0)