-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathdataset.py
52 lines (44 loc) · 1.88 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import csv
from PIL import Image
import torch
from torch.utils.data import Dataset
import torchvision.transforms as transforms
class CarPlugDataset(Dataset):
"""
Custom Car Plug Dataset
Returns tensor data items of shape (Views, Channels, Height, Width) with the corresponding
encoded label.
"""
def __init__(self, root, plug_label_filename):
self.root = root
self.plug_label_map = self._get_plug_label_map(plug_label_filename)
self.plug_names = self._get_plug_names(root)
self.label_encoder = {'CPA Stecker':0,
'Schraubstecker':1,
'Bügelstecker':2,
'Schieberstecker':3,
'Kraftschlüssig mit Schraubsicherung':4,
'Bajonette':5}
def _get_plug_names(self, root):
plug_names = [fname.split('_')[0] for fname in os.listdir(root) if fname.endswith('.png')]
plug_names = list(set(plug_names))
return plug_names
def _get_plug_label_map(self, filename):
reader = csv.DictReader(open(filename))
plug_label_map = {}
for row in reader:
plug_label_map[row['part_no']] = row['label']
return plug_label_map
def __len__(self):
return len(self.plug_names)
def _transform(self, image):
transform = transforms.Compose([transforms.Resize((224, 224)), transforms.ToTensor()])
return transform(image)
def __getitem__(self, index):
plug_name = self.plug_names[index]
# Get Images of the Plug
plug_fnames = glob.glob(self.root + f'/{plug_name}_*.png')
plug = torch.stack([self._transform(Image.open(fname).convert('RGB')) for fname in plug_fnames])
label = self.label_encoder[self.plug_label_map[plug_name]]
return plug, label